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Abstract 15 

The updated Coupled Arctic Prediction System (CAPS) is evaluated, which is built on 16 

new versions of Weather Research and Forecasting model (WRF), the Regional Ocean 17 

Modeling System (ROMS), the Community Ice CodE (CICE), and a data assimilation based 18 

on the Local Error Subspace Transform Kalman Filter. A set of Pan-Arctic prediction 19 

experiments with improved/changed physical parameterizations in WRF, ROMS and CICE as 20 

well as different configurations are performed for the year 2018 to assess their impacts on the 21 

predictive skill of Arctic sea ice at seasonal timescale. The key improvements of WRF, 22 

including cumulus, boundary layer, and land surface schemes, result in improved simulation in 23 

near surface air temperature and downward radiation. The major changes of ROMS, including 24 

tracer advection and vertical mixing schemes, lead to improved evolution of the predicted total 25 

ice extent (particularly correcting the late ice recovery issue in the previous CAPS), and 26 

reduced biases in sea surface temperature. The changes of CICE, that include improved ice 27 

thermodynamics and assimilation of new sea ice thickness product, have noticeable influences 28 

on the predicted ice thickness and the timing of ice recovery. Results from the prediction 29 

experiments suggest that the updated CAPS can better predict the evolution of total ice extent 30 

compared with its predecessor, though the predictions still have certain biases at the regional 31 

scale. We further show that the CAPS can remain skillful beyond the melting season, which 32 

may have potential values for stakeholders making decisions for socioeconomical activities in 33 

the Arctic. 34 
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1. Introduction 36 

Over the past few decades, the extent of Arctic sea ice has decreased rapidly and entered 37 

a thinner/younger regime associated with global climate change (e.g., Kwok, 2018; Serreze 38 

and Meier, 2019). The drastic changes in the properties of Arctic sea ice have captured 39 

attentions of a wide range of stakeholders, such as trans-Arctic shipping, natural resource 40 

exploration, and activities of coastal communities relying on sea ice (e.g., Newton et al., 2016). 41 

This leads to increasing demands on skillful Arctic sea ice prediction, particularly at seasonal 42 

timescale (e.g., Jung et al., 2016; Liu et al., 2019; Stroeve et al., 2014). However, Arctic sea 43 

ice prediction based on different approaches (e.g., statistical method and dynamical model) 44 

submitted to the Sea Ice Outlook, a community effort managed by the Sea Ice Prediction 45 

Network (SPIN, https://www.arcus.org/sipn), shows substantial biases in the predicted seasonal 46 

minimum of Arctic sea ice extent compared to the observations for most years since 2008 (Liu 47 

et al., 2019; Stroeve et al., 2014). The skills of coupled climate models (GCMs) in predicting 48 

Pan-Arctic sea ice extent have been assessed with suites of hindcasts, and these studies 49 

suggested that GCMs have skill in predicting ice extent at lead times of 1-6 months (e.g., 50 

Blanchard-Wrigglesworth et al., 2015; Chevallier et al., 2013; Guemas et al., 2016; Merryfield 51 

et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Sigmond et al., 2013; Wang et al., 2013; 52 

Zampieri et al., 2018). Moreover, studies using a “perfect model” approach, which examines 53 

the skill of a model predicting itself, suggested that Arctic sea ice cover can be potentially 54 

predictable up to two years in advance (e.g., Blanchard-Wrigglesworth et al., 2011; Blanchard-55 

Wrigglesworth and Bushuk, 2018; Day et al., 2016; Germe et al., 2014; Tietsche et al., 2014). 56 
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The gap between actual predictive skill with dynamical models and theoretical predictability 57 

suggested by “perfect model” studies may be related to inaccurate initial conditions and/or 58 

inadequate physical parameterizations in dynamical models (Stroeve et al., 2015). 59 

Recently, we have developed an atmosphere-ocean-sea ice regional coupled modeling 60 

system, hereafter called Coupled Arctic Prediction System (CAPS), for seasonal Arctic sea ice 61 

and climate prediction (Yang et al., 2020, hereafter Y20). To improve the accuracy of initial 62 

sea ice conditions, CAPS employs an ensemble-based data assimilation system to assimilate 63 

satellite-based sea ice observations. Seasonal Pan-Arctic sea ice predictions with improved 64 

initial sea ice conditions conducted in Y20 have shown that CAPS has potential to provide 65 

skillful Arctic sea ice predictions at seasonal timescale.  66 

With recent improvements in the model components of CAPS, this paper gives a 67 

description of the updated CAPS, and presents the assessment of seasonal Arctic sea ice 68 

predictions associated with improved/changed physical parameterizations. This paper is 69 

structured as follows. Section 2 provides an overview of the CAPS, including major 70 

changes/improvements in the model components compared to its predecessor described in Y20, 71 

as well as the data assimilation system and the assimilation procedures. Section 3 describes the 72 

designs of the prediction experiments, and examines the performance of the updated CAPS 73 

associated with major changes/improvements in the model components. Some discussions and 74 

concluding remarks and are given in section 4 and 5. 75 

2. Coupled Arctic Prediction System (CAPS) 76 

As described in Y20, to enhance our ability to predict seasonal Arctic sea ice as well as 77 

https://doi.org/10.5194/gmd-2021-220
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

5 

 

climate, we have developed CAPS by coupling the Community Ice CodE (CICE) with the 78 

Weather Research and Forecasting Model (WRF) and the Regional Ocean Modeling System 79 

(ROMS) based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) 80 

modeling framework (Warner et al., 2010). The advantage of CAPS is its model components 81 

have different physics options for us to choose. With community efforts on improving the WRF, 82 

ROMS, and CICE models, in this study, we update CAPS based on newly-released WRF, 83 

ROMS, and CICE models for further development of our Arctic sea ice prediction system. 84 

Table 1 provides the versions for these model components between this paper and Y20. The 85 

same physical parameterizations described in Y20 are used here for the control simulation, but 86 

some of them are improved as the WRF, ROMS, and CICE models released their new versions 87 

(see Table 2). Major changes in physics parameterization and the model infrastructure in the 88 

WRF, ROMS, and CICE models are described below. 89 

2.1. Model components and updates 90 

WRF: The WRF model (Skamarock et al., 2005) is a non-hydrostatic and quasi-91 

compressible model, which uses hybrid vertical coordinate with the top of the model at 50 mb 92 

and the Arakawa C-grid in horizontal. The Rapid Refresh (RAP) system, a high-frequency, 93 

continental-scale weather prediction/assimilation modeling system operational at the National 94 

Centers for Environmental Prediction (NCEP), has made some improvements in the WRF 95 

model physics (Benjamin et al., 2016). The official release of WRF model since version 3.9 96 

has adapted these modified physics parameterizations in the RAP system, including the Grell-97 

Freitas convection scheme (GF) and the Mellor-Yamada-Nakanishi-Niino planetary boundary 98 
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layer (PBL) scheme (MYNN) as the replacement of original schemes in the WRF model. For 99 

the GF scheme, the major improvements compared to the original scheme (Grell and Freitas, 100 

2014) include: 1) a beta probability density function used as the normalized mass flux profile 101 

for representing height-dependent entrainment/detrainment rates within statistical-averaged 102 

deep convective plumes, and 2) the European Centre for Medium-Range Weather Forecasts 103 

(ECMWF) approach used for momentum transport due to convection (Biswas et al. 2020; 104 

Freitas et al. 2018). For the MYNN scheme, compared to the original scheme (Nakanishi and 105 

Nino, 2009), the RAP system improved the mixing-length formulation and removed numerical 106 

deficiencies to better represent subgrid-scale cloudiness (Benjamin et al. 2016, see Append. B). 107 

For the Noah land surface model (Chen and Dudhia, 2001), some issues including 108 

discontinuous behavior for soil ice melting and negative moisture fluxes over glacial and sea 109 

ice, as well as minor issues associated with snow melting have been fixed since the release of 110 

WRF version 3.9.  111 

ROMS: The ROMS model is a terrain-following and free-surface model, which solves 112 

three-dimensional Reynolds-averaged Navier-Stokes equations with the hydrostatic and 113 

Boussinesq approximation (Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008). In the 114 

vertical, the equations are discretized over bottom topography with stretching terrain-following 115 

coordinates (Song and Haidvodel, 1994). In the horizontal, the ROMS model uses boundary-116 

fitted, orthogonal curvilinear coordinates on a staggered Arakawa C-grid. In the updated CAPS, 117 

the major change in the latest ROMS model is associated with surface heat/freshwater fluxes 118 

and their coupling to other model components. This change prevents the potentially erroneous 119 
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results when the ROMS timestep is smaller than the coupling frequency with other model 120 

components. Other changes in the ROMS model of the updated CAPS can be found in the 121 

ROMS distribution website (https://www.myroms.org/projects/src/report/4 Ticket #654 to 122 

#824). 123 

CICE: The CICE model is designed to be a sea ice model component for global coupled 124 

climate models. Its dynamic core simulates the movement of sea ice based on forces from the 125 

atmosphere, the ocean, and Earth’s rotation and the material strength of the ice. The new feature 126 

of CICE version 6.0.0 contains an independent software package, Icepack, to provide the 127 

column physics code for all thermodynamic parameterizations in a single grid-cell. These 128 

parameterizations include the MUSHY-layer ice thermodynamics (Turner et al., 2013) that 129 

resolves prognostic vertical temperature and salinity profiles. The new version of CICE also 130 

includes improvements in sea ice rheology and a new landfast-ice parameterization (Lemieux 131 

et al., 2016). More details can be found in the CICE Consortium GitHub page 132 

(https://github.com/CICE-Consortium).  133 

2.2. Data Assimilation and evaluation data 134 

As described in Y20, the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 135 

2013) was implemented in CAPS for assimilating sea ice observations, which provides a 136 

variety of optimized ensemble-based Kalman filters including the Local Ensemble Transform 137 

Kalman Filter (LETKF; Hunt et al., 2007), the Localized Singular Evolutive Interpolated 138 

Kalman (LSEIK; Nerger et al., 2006), and the Local Error Subspace Transform Kalman Filter 139 

(LESTKF; Nerger et al., 2012). Following Y20, the LESTKF is used to assimilate satellite-140 
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observed sea ice parameters. The LESTKF projects the ensemble onto the error subspace and 141 

then directly computes the ensemble transformation in the error subspace. This results in better 142 

assimilation performance compared to the LSEIK filter and higher computational efficiency 143 

compared to the LETKF as discussed in Nerger et al. (2012).  144 

The initial ensembles are generated by applying the second-order exact sampling (Pham, 145 

2001) to sea ice state vectors (ice concentration and thickness) from an one-month free run, 146 

and assimilating sea ice observations that include: 1) the near real-time daily Arctic sea ice 147 

concentration processed by the National Aeronautics and Space Administration (NASA) Team 148 

algorithm (Maslanik and Stroeve, 1999) obtained from the National Snow and Ice Data Center 149 

(NSIDC; https://nsidc.org/data/NSIDC-0081/), 2) a combined monthly sea ice thickness 150 

derived from the CryoSat-2 (Laxon et al., 2013; obtained from http://data.seaiceportal.de), and 151 

daily sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS; Kaleschke 152 

et al., 2012; Tian-Kunze et al., 2014; obtained from https://icdc.cen.uni-hamburg.de/en/l3c-153 

smos-sit.html). To address the issue that sea ice thickness derived from CyroSat-2 and SMOS 154 

are unavailable during the melting season, the melting season ice thickness is estimated based 155 

on the seasonal cycle of the Pan-Arctic Ice Ocean Modeling and Assimilation System 156 

(PIOMAS) daily sea ice thickness (Zhang and Rothrock, 2003) as described in Y20.  157 

In this study, compared with Y20, we change the localization radius from 2 to 6 grids 158 

during the assimilation procedures. The sea ice component in the updated CAPS experienced 159 

some instability at initial simulations with 2 localization radii but not with 6 localization radii. 160 

Figure 1 shows that initial sea ice thickness after the data assimilation with (a) 2 localization 161 
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radii and 1.5 m uncertainty for assimilating ice thickness and (b) 6 localization radii and 0.75 162 

m uncertainty. The initial ice thickness for both configurations has similar spatial distribution. 163 

However, the ice thickness with 2 localization radii and 1.5 m uncertainty shows discontinuous 164 

features (Fig. 1a), which results in numerical instability during the initial model integration. 165 

Such discontinuous feature is obviously corrected with 6 localization radii and 0.75 m 166 

uncertainty (Fig. 1b). Following Y20, here we test the 2018 prediction experiment with 2 and 167 

6 localization radii but the same uncertainty for ice thickness (0.75m) for the data assimilation 168 

(Y20 and Y20_MOD, see Table 3). The Y20 and Y20_MOD experiments show very similar 169 

temporal evolutions of the total sea ice extent, although Y20_MOD (red solid line) predicts 170 

slightly less ice extent than that of Y20 (blue line) for the July experiment (Figure 2). In this 171 

study, the configuration of Y20_MOD is designated as the reference for the following 172 

assessment of the updated CAPS. 173 

For the evaluation of sea ice prediction, Sea Ice Index (Fetterer et al., 2017; obtained from 174 

https://nsidc.org/data/G02135) is used as the observed total sea ice extent, and the NSIDC sea 175 

ice concentrations derived from Special Sensor Microwave Imager/Sounder (SSMIS) with the 176 

NASA Team algorithm (Cavalieri et al., 1996; obtained from https://nsidc.org/data/nsidc-0051) 177 

is employed. For the assessment of the atmospheric and oceanic variables, the ECMWF 178 

reanalysis version 5 (ERA5; Hersbach et al., 2020; obtained from 179 

https://cds.climate.copernicus.eu) and National Oceanic and Atmospheric Administration 180 

(NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) (Reynolds et al., 2007; 181 

obtained from https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) are utilized. 182 
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3. Model Evaluation 183 

3.1. Experiment designs 184 

Following Y20, the model domain includes 319 (449) x- (y-) grid points with a ~24 km 185 

grid spacing for all model components (see Figure 2 in Y20). The WRF model uses 50 vertical 186 

levels, the ROMS model uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow 187 

layer, and 5 categories of sea ice thickness. The coupling frequency across all model 188 

components is 30 minutes. Initial and boundary conditions for the WRF and ROMS models are 189 

generated from the Climate Forecast System version 2 (CFSv2, Saha et al., 2014) operational 190 

forecast archived at NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). Sea ice 191 

initial conditions are generated from the data assimilation described in section 2.2. Ensemble 192 

predictions with 8 members are conducted. A set of numerical experiments for the Pan-Arctic 193 

seasonal sea ice prediction with different configurations, starting from July 1st to October 1st 194 

for the year of 2018, has been conducted. Table 3 provides the details of these experiments that 195 

allow us to examine impacts of improved/changed physical parameterizations in the updated 196 

CAPS on sea ice prediction at seasonal timescale. 197 

3.2. Impacts of the RAP physics in the WRF model 198 

To examine the performance the updated CAPS compared to its predecessor in Y20, the 199 

Y21_CTRL experiment uses some updated physics configurations in the WRF model as listed 200 

in Table 2. The temporal evolution of the ensemble mean of the predicted Arctic sea ice extent 201 

for the Y21_CTRL and Y20_MOD experiments along with the NSIDC observations are shown 202 

in Figure 3. The ice extent is calculated as the sum of area of all grid cells with ice concentration 203 
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greater than 15%. Besides the total ice extent, we also calculate ice extent for the following 204 

subregions: 1) Beaufort and Chukchi Seas (120W-180, 60N-80N), 2) East Siberian and Laptev 205 

Seas (90E-180, 60N-80N), 3) Barents, Kara, and Greenland Seas (30W-90E, 60N-80N), 4) 206 

Canadian Archipelago and Baffin Bay (30W-120W, 60N-80N). To further assess the predictive 207 

skill of our predictions, here we also show the climatology prediction (CLIM, the period of 208 

1998-2017) and the damped anomaly persistence prediction (DAMP). Following Van den Dool 209 

(2006), the DAMP is generated from the initial sea ice extent anomaly (relative to the 1998-210 

2017 climatology) scaled by the autocorrelation and the ratio of standard deviation between 211 

different lead times and initial times (see the DAMP equation in Y20). 212 

Compared to the Y20_MOD experiment, the Y21_CTRL experiment has ~0.5 million km2 213 

more ice extent at the initial, but the ice in Y21_CTRL melts faster than Y20_MOD during the 214 

first 2-week integration. After that, they track each other closely, and predict nearly the same 215 

minimum ice extent (~4.3 million km2). Like Y20_MOD, Y21 still has a delayed ice recovery 216 

in late September. Compared with the CLIM/DAMP predictions (black dashed and dotted 217 

lines), both Y20_MOD and Y21_CTRL have smaller biases after early August. At the regional 218 

scale, in the Beaufort-Chukchi Seas, Y21_CTRL predicts slower ice retreat after late July than 219 

that of Y20_MOD, whereas in the East Siberian-Laptev Seas, Y20_MOD shows slower ice 220 

decline after mid-July than that of Y21_CTRL (Fig. 3a, 3b). Both Y20_MOD and Y21_CTRL 221 

agree well with the observations in the Barents-Kara-Greenland Seas (Fig. 3c). In the Baffin 222 

Bay-Canadian Archipelago, both Y20_MOD and Y21_CTRL have similar temporal evolution 223 

but show systematic underestimation of the observed areal extent (~0.3 million km2, Fig. 3d). 224 
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This underestimation is partly due to the difference in land/sea mask (particularly in the 225 

Canadian Archipelago) between our model grid and the NSIDC grid (not shown). 226 

Figure 4 shows the spatial distribution of the NSIDC sea ice concentration and the 227 

difference between the predicted sea ice concentration and the observations for all grid cells 228 

that the predictions and the observations both have at least 15% ice concentration for the 229 

Y20_MOD and Y21_CTRL experiments. The vertical and horizontal lining areas represent 230 

difference of the ice edge location. The distribution of the predicted ice concentration 231 

anomalies resembles in both Y20_MOD and Y21_CTRL experiments, except Y21_CTRL 232 

predicts relatively higher ice concentration in much of the Beaufort, Chukchi, and East Siberian 233 

Seas for the entire period (Fig. 4d-i). 234 

In a fully coupled predictive model, sea ice is determined by the fluxes from the 235 

atmosphere above and the ocean below. The major difference between Y20_MOD and 236 

Y21_CTRL is the RAP physics improvements in the WRF model. The RAP physics 237 

improvements can have profound influence on the behavior of simulated atmospheric variables 238 

(i.e., radiation, temperature, humidity, precipitation, and wind). Figure 5 shows the spatial 239 

distribution of the ERA5 2m air temperature (T2), the predicted anomalies (ensemble mean 240 

minuses ERA5) of Y20_MOD, and the difference between Y21_CTRL and Y20_MOD. For 241 

Y20_MOD, the predicted air temperature in July has small cold (warm) biases over all ocean 242 

basins (northern Greenland and eastern coastal Siberia), small-to-moderate cold biases (~3-5 243 

degrees) over Canada and Siberia, and moderate-to-large cold biases (~6-9 degrees) over 244 

eastern Europe (Fig. 5d). In August (Fig. 5e), the cold biases over most of the model domain 245 
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are increased. In particular, very large cold bias (over 10 degrees) are located over east Siberia. 246 

In September, these cold biases are decreased, and warm biases are found in the north of 247 

Greenland and Canada (Fig. 5f). With the adaptation of the RAP physics in the updated WRF 248 

model, Y21_CTRL, in general, produces a warmer state in most of the model domain compared 249 

to that of Y20_MOD during the entire prediction period. For July (Fig. 5g), the predicted air 250 

temperature is slightly warmer (< 1 degrees) over the Arctic Ocean, the Pacific, and Atlantic 251 

sectors, moderately warmer (~1-2 degrees) over the Siberia coast and Canadian Archipelago, 252 

but the slightly colder (<1 degrees) over northeastern Europe and northern Canada than that of 253 

Y20_MOD. For August (Fig. 5h), the Arctic Ocean and Atlantic sector (the Pacific sector and 254 

northern Canada) are relatively warmer (colder) than that of Y20_MOD. Excessive cold biases 255 

shown in Y20_MOD over Siberia are reduced notably (~2.5-4 degrees) in Y21_CTRL. As 256 

discussed above, Y21_CTRL has faster ice melting in the East Siberian-Laptev Seas, which 257 

can be partly attributed to the changes in the predicted air temperature. 258 

Figure 6 and Figure 7 shows the spatial distribution of the ERA5 downward solar and 259 

thermal radiation at the surface (SWDN and LWDN), the predicted anomalies (ensemble mean 260 

minuses ERA5) of Y20_MOD, and the difference between Y20_MOD and Y21_CTRL. For 261 

July, Y20_MOD (Fig. 6d) results in less SWDN over most of ocean basins, southern Canada, 262 

western Siberia, and eastern Europe while more SWDN over southern and eastern Siberia, 263 

Canadian Archipelago, and northern Canada compared with ERA5. For August and September 264 

(Fig. 6e-f), the spatial distribution, in general, is similar to that of July, except that eastern 265 

Siberia, Canadian Archipelago and northern Canada have opposite sign. It also shows that the 266 
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magnitude of biases decreases as the lead time decreases. With the RAP physics in the 267 

Y21_CTRL experiment, large areas have smaller biases compared with Y20_MOD in July (i.e., 268 

the positive difference between Y21_CTRL and Y20_MOD corresponds to the negative biases 269 

in Y20_MOD), except the north Pacific (especially the Sea of Okhotsk), southern Canada, and 270 

the central coastal Siberia (Fig. 6g). For August (Fig. 6h), there are more areas with smaller 271 

biases, but the north Pacific and southern Canada still have larger biases. In contrast to SWDN, 272 

the biases of LWDN shown in Y20_MOD has smaller magnitude (up to 100 W/m2 in SWDN 273 

vs. 50 W/m2 in LWDN) for the entire prediction period (Fig. 7d-f). For July, Y20_MOD (Fig. 274 

7d) shows less LDWN over most of the model domain compared with ERA5, except the 275 

Atlantic sector and north of Greenland. For August, areas with negative biases expand and the 276 

magnitude of biases increases (particularly in eastern and southern Siberia) compared with that 277 

of July (Fig. 7e). For September (Fig. 7f), the spatial distribution of LWDN is mostly similar 278 

to that of July, except that northern Canada and Canadian Archipelago show positive biases. 279 

The Y21_CTRL experiment with the RAP physics tends to reduce the negative biases shown 280 

in Y20_MOD, especially the negative biases over Siberia in August and September (Fig. 7g-i). 281 

Associated with the change in surface fluxes, compared to Y20_MOD, Y21_CTRL shows 282 

warmer SST along the ice edge in July, and the warm difference along the ice edge becomes 283 

larger (particularly near the east Siberian coast) in August and September. The other areas in 284 

Y21_CTRL are mostly with less than 0.2 degrees difference relative to Y20_MOD (Fig. 10g-285 

i). 286 

3.3. ROMS configuration 287 
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As described in section 2, the ROMS model uses a generalized topography-following 288 

coordinate, but currently has two vertical coordinate transformations: 289 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝑆(𝑥, 𝑦, 𝜎) + 𝜁(𝑥, 𝑦, 𝑡) [1 +
𝑆(𝑥, 𝑦, 𝜎)

ℎ(𝑥, 𝑦)
]

𝑆(𝑥, 𝑦, 𝜎) = ℎ𝑐𝜎 + [ℎ(𝑥, 𝑦) − ℎ𝑐]𝐶(𝜎)

(1) 306 

or 290 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝜁(𝑥, 𝑦, 𝑡) + [𝜁(𝑥, 𝑦, 𝑡) + ℎ(𝑥, 𝑦)]𝑆(𝑥, 𝑦, 𝜎)

𝑆(𝑥, 𝑦, 𝜎) =
ℎ𝑐𝜎 + ℎ(𝑥, 𝑦)𝐶(𝜎)

ℎ𝑐 + ℎ(𝑥, 𝑦)

(2) 307 

where 𝑆(𝑥, 𝑦, 𝜎) is a nonlinear vertical transformation function, 𝜁(𝑥, 𝑦, 𝑡) is the free-surface, 291 

ℎ(𝑥, 𝑦) is the unperturbed water column thickness, 𝐶(𝜎) is the non-dimensional, monotonic, 292 

vertical stretching function, and ℎ𝑐 controls the behavior of the vertical stretching. In Y20, we 293 

used the transformation (1) and the vertical stretching function introduced by Song and 294 

Haidvogel (1994) as the setup for seasonal Arctic sea ice prediction. However, the vertical 295 

transformation (1) has an inherent limitation for the value of ℎ𝑐  (expected to be the 296 

thermocline depth), which must be less than or equal to the minimum value in ℎ(𝑥, 𝑦). As the 297 

result, ℎ𝑐 was chosen as 10 meters due to the limitation of the minimum value in ℎ(𝑥, 𝑦) in 298 

Y20. This limitation is removed with the vertical transformation (2) and ℎ𝑐  can be any 299 

positive value. Currently, the vertical transformation (2) and the vertical stretching function 300 

introduced by Shchepetkin (2010, the function in a research version of ROMS developed at 301 

University of California, Los Angeles, https://www.myroms.org/wiki/Vertical_S-coordinate) 302 

are employed. The Y21_VT experiment is designed to examine the impacts of the vertical 303 

transformation in the ROMS model on seasonal sea ice prediction by using the vertical 304 

transformation (2), the Shchepetkin stretching function, and 300 meters for ℎ𝑐. 305 
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In pervious sensitivity experiments to determine the choice of ROMS physical 308 

parametrizations listed in Table 2, we noticed that the tracer advection and the vertical mixing 309 

schemes have important effects on sea ice simulation. Thus here the Y21_RP experiment is 310 

designated to further explore the influence of these schemes in the updated CAPS, in which the 311 

tracer advection scheme is changed from Multidimensional positive definite advection 312 

transport algorithm (MPDATA; Smolarkiewicz, 2006) to the third-order upwind horizontal 313 

advection (U3H; Rasch, 1994; Shchepetkin, and McWilliams, 2005) and the fourth-order 314 

centered vertical advection schemes (C4V; Shchepetkin, and McWilliams, 1998; 2005). 315 

The temporal evolutions of the ensemble mean of the predicted Arctic total sea ice extent 316 

(as well as regional ice extent) for Y21_CTRL, Y21_VT, and Y21_RP are shown in Figure 8. 317 

Y21_VT (green line) simulates slightly less areal extent (<0.1 million km2) compared to that 318 

of Y21_CTRL throughout the prediction period. The Y21_RP shows highly similar temporal 319 

evolution of areal extent as Y21_CTRL until near the end of August. After that, the ice melting 320 

slows down and ice extent begins to recover earlier in Y21_RP (red line) compared to both 321 

Y21_CRTL and Y21_VT, which leads to much smaller biases in seasonal minimum ice extent 322 

relative to the observation. This result suggests the delayed ice recovery in late September 323 

shown in Y20, Y20_MOD and Y21_CTRL is partly due to the choice of ocean advection and 324 

vertical mixing schemes that change the behavior of oceanic state. Y21_RP also shows much 325 

better predictive skill after late August compared with the CLIM/DAMP predictions (black 326 

dashed and dotted lines). At the regional scale, changes in both the ocean vertical coordinate 327 

(Y21_VT) and the advection and vertical mixing scheme (Y21_RP) do not significantly affect 328 
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the evolution of areal extent in the Barents-Kara-Greenland Seas and the Baffin Bay-Canadian 329 

Archipelago compared to that of Y21_CTRL (Fig. 8c, d). However, Y21_VT agrees better with 330 

the observations in the Beaufort-Chukchi Seas and the East Siberian-Laptev Seas compared to 331 

that of Y21_CTRL and the ice extent of Y21_RP stops retreating after mid-September in the 332 

Beaufort-Chukchi Seas relative to that of Y21_CTRL (Fig. 8a, b). 333 

Spatially, the choice of vertical transformation in Y21_VT does not significantly change 334 

the distribution of sea ice biases in Y21_CTRL (i.e., higher ice concentration in the Pacific 335 

sector, and lower ice concentration in the Atlantic sector, (Fig. 9a-c, Fig. 4g-i). The Y21_VT 336 

experiment has slightly lower ice concentration compared with that of Y21_CTRL, which 337 

corresponds to less areal extent of Y21_VT shown in Figure 8. By using U3H/C4V advection 338 

scheme, the Y21_RP experiment has positive anomalies for most ice-covered areas (Fig. 9d-f). 339 

For September, the Y21_RP experiment better predicts the ice edge location in the Atlantic 340 

sector of the Arctic Ocean (i.e., smaller areas with horizontal/vertical lining) compared to the 341 

experiments described above (Fig. 9f). 342 

Figure 10 shows that spatial distribution of the SST changes of Y21_VT and Y21_RP 343 

relative to Y21_CTRL (as well as predicted anomalies of Y20_MOD and the difference 344 

between Y21_CTRL and Y21_MOD). By using different vertical transformation in the ROMS 345 

model, the Y21_VT experiment simulates slightly warmer SST in the north Pacific and Atlantic 346 

(~0.5 degree), and colder SST in the Bering Sea, Sea of Okhotsk, Barents-Kara, and Greenland 347 

Seas (~0.5-1.0 degree). We also note that SST under sea ice cover is warmer than that of 348 

Y21_CTRL, especially in the Beaufort-Chukchi Seas, which results in larger temperature 349 
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difference and thus heat fluxes at the ice-ocean interface, and then contributes to faster ice 350 

retreating in the Beaufort-Chukchi Seas (Fig. 10j-l, Fig. 8a). With U3H/C4V tracer advection 351 

scheme in Y21_RP, cold biases shown in Y21_CTRL (Fig. 10d-i) are reduced significantly in 352 

the north Pacific and Atlantic, but SST under ice cover is slightly colder than that of Y21_CTRL 353 

(Fig. 10m-o). 354 

3.4. CICE configuration and ice thickness assimilation 355 

In Y20, we used the ice thermodynamics introduced by Bitz and Lipscomb (1999; 356 

hereafter BL99), which assumes a fixed vertical salinity profile based on observations, as the 357 

setup for seasonal Arctic sea ice prediction. Since the release of CICE version 5, it includes the 358 

MUSHY-layer ice thermodynamics introduced by Turner et al. (2013), which simulates 359 

vertically resolved and time-varying prognostic salinity and its associated impact on other 360 

thermodynamics properties of sea ice. In the Y21_MUSHY experiment, we change ice 361 

thermodynamics from BL99 to MUSHY (Table 3) to examine whether improved ice 362 

thermodynamics has noticeable influence on sea ice prediction at seasonal timescale. 363 

Additionally, in Y20 and prediction experiments discussed above, we use a simple approach to 364 

merge CryoSat-2 and SMOS ice thickness by replacing ice thickness less than 1m in CryoSat-365 

2 data with SMOS data for ice thickness assimilation. Ricker et al. (2017) presented a new ice 366 

thickness product (CS2SMOS) based on the optimal interpolation to statistically merge CrySat-367 

2 and SMOS data. The Y21_SIT experiment (Table 3) is designed to investigate the impacts of 368 

assimilating different approaches to merge CyroSat-2 and SMOS data on sea ice prediction . 369 

Figure 11 shows the temporal evolutions of the ensemble mean of the predicted Arctic 370 
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total sea ice extent (as well as regional ice extent) for the Y21_RP, Y21_MUSHY, and Y21_SIT 371 

experiments. All three experiments predict almost identical total ice extents during the first 2-372 

week integration. After that, Y21_MUSHY (red solid line) produces a slightly more ice extent 373 

(~0.2 million km2) than that of Y21_RP (blue solid line) for the rest of integration, which 374 

mainly due to an increase of sea ice in the East Siberian-Laptev Seas (Fig. 11b). The timing of 375 

minimum ice extent occurs early in Y21_MUSHY relative to Y21_RP, resulting in early 376 

recovery. In contrast to Y21_RP, Y21_SIT (green solid line) simulates slightly larger ice extent 377 

after the first week of August. At the regional scale, compared with Y21_RP, Y21_SIT predicts 378 

more ice before the mid-August and less ice after that in the Beaufort-Chukchi Seas (Fig. 11a) 379 

and larger ice extent throughout the entire prediction period in the Barents-Kara-Greenland 380 

Seas (Fig. 11c). For the spatial distribution of ice concentration anomalies, Y21_MUSHY and 381 

Y21_SIT show similar distribution as Y21_RP with slightly higher ice concentration at 382 

gridpoint scale (not shown). 383 

Figure 12 show the ensemble mean of predicted sea ice thickness of the Y21_RP, 384 

Y21_MUSHY, and Y21_SIT experiments and the ice thickness changes of Y21_MUSHY and 385 

Y21_SIT relative to Y21_RP. All three experiments produce similar ice thickness distribution, 386 

that is the thickest ice locates near the Canadian Archipelago and the Lincoln Sea, as well as 387 

the thickness gradient directs toward the Siberia coast (Fig. 12a-f). Compared with Y21_RP, 388 

Y21_MUSHY simulates thicker ice (from ~0.14m in July to over 0.2m in September) in the 389 

Canadian Arctic and the central Arctic Ocean, thinner ice (over 0.2m) in the Kara Sea in 390 

September, and negligible thickness difference in other areas (Fig. 12g1-i1). This is consistent 391 
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with previous studies showing that the Mushy-layer thermodynamics simulates thicker ice than 392 

BL99 thermodynamics in both standalone CICE (Turner and Hunke, 2015) and the fully-393 

coupled context (Bailey et al., 2020). Compared with Y21_RP, Y21_SIT predicts thicker ice 394 

most of the ice edge zone and thinner ice in the central Arctic Ocean in July and August. In 395 

September, Y21_SIT simulates much thinner ice (over 0.2m) in the Beaufort, Chukchi, East 396 

Siberian Seas, and the central Arctic Ocean along with thicker ice in the Barents, Kara, and 397 

Laptev Seas (Fig. 12g2-i2). The evolution of predicted ice thickness in Y21_SIT corresponds to 398 

that of regional ice extent shown in Figure 11. This result suggests that assimilating the new 399 

ice thickness product (CS2SMOS) have significant influences on the predicted ice thickness at 400 

the regional scale. 401 

4. Discussions 402 

Arctic sea ice prediction experiments conducted in this study follow the protocol of Sea 403 

Ice Prediction Network (SPIN), in which the outlook start from June 1st, July 1st, and August 404 

1st to predict seasonal minimum of ice extent in September. Due to the socioeconomic impacts 405 

of sea ice recovery during the freeze-up period (e.g., trans-Arctic shipping, coastal activities), 406 

it is also essential to investigate the predictive capability of CAPS beyond the SPIN prediction 407 

period. Combining the entire prediction period provided by CFS forecasts and the Y21_SIT 408 

experiment, the Y21_EXT-7 experiment is designed to extend the prediction period to the end 409 

of January next year (Table 3). Figure 13 shows the temporal evolutions of the ensemble mean 410 

of the predicted Arctic total sea ice extent (as well as regional ice extent) for the Y21_EXT-7 411 

experiment. As shown in Figure 13, the predicted total ice extent exhibits reasonable evolution 412 
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in terms of seasonal minimum and timing of recovery compared with the observations until 413 

late November. Y21_EXT-7 also performs better than that of the CLIM/DAMP predictions 414 

(black dashed and dotted lines) until mid-to-late November. After that, Y21_EXT-7 415 

overestimates the total ice extent compared with the observations, and this overestimation is 416 

largely contributed by more extensive sea ice in the Barents-Kara-Greenland Seas (Fig. 13c). 417 

The overestimated ice cover in the Barents-Kara-Greenland Seas may be the results of biases 418 

from the CFS data propagated into the model domain through lateral boundary conditions and 419 

accumulated effects of biases in model components. 420 

A growing number of studies have shown evidences of Arctic sea ice spring predictability 421 

barrier, which is defined as a springtime date that predictions initialized prior to this date have 422 

much lower predictive skill than predictions initialized after/on that date (e.g., Bonan et al., 423 

2019; Bushuk et al., 2017; 2018; Day et al., 2014). To investigate the predictive capability of 424 

CAPS initialized prior to the summer melting season, the Y21_MAR-7 experiment is initialized 425 

on March 1st, 2018 and predicts sea ice evolution until the end of September (Table 3). Figure 426 

14 shows the temporal evolutions of the ensemble mean of the predicted Arctic total sea ice 427 

extent (as well as regional ice extent) for the Y21_MAR-7 experiment. The evolution of 428 

predicted total sea ice extent shows faster ice melting rate than the observations after mid-May, 429 

slower ice retreating after mid-July, and the predicted minimum of ice extent has an 430 

overestimation (~1.2 million km2) compared to the observed minimum. In contrast to 431 

Y21_MAR-7, the DAMP prediction (black dotted line) agrees better with the observations 432 

throughout the 7-month prediction period. At the regional scale, Y21_MAR-7 shows abrupt ice 433 
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decline after May in the Beaufort-Chukchi Seas (Fig. 14a), and this decline is mainly 434 

contributed by ice melting along the Alaskan coast (not shown). Sea ice in the East Siberian-435 

Laptev Seas exhibits slow melting after July (Fig. 14b), and ice cover areas still connect to the 436 

Siberian coast, which is different from the observations (not shown). For the Barents-Kara-437 

Greenland Seas (Baffin Bay-Canadian Archipelago), there are systematic overestimations 438 

(underestimations) throughout the entire prediction period (Fig. 14c-d). Bushuk et al. (2020) 439 

suggested that Arctic sea ice predictability prior to the barrier date is mainly limited by synoptic 440 

events, which are only predictable for few weeks, whereas the predictability after the barrier 441 

date is enhanced by ice-albedo feedback with the onset of ice melting. 442 

5. Conclusions 443 

This paper presents and evaluates the updated Coupled Arctic Prediction System (CAPS) 444 

designated for Arctic sea ice and climate prediction. The CAPS consists of the WRF, ROMS, 445 

and CICE models under the framework of the COAWST system, as well as data assimilation 446 

system based on the localized error subspace transform ensemble Kalman filter to assimilate 447 

satellite-observed sea ice observations. A set of Pan-Arctic prediction experiments with 448 

improved/changed physical parameterizations as well as different configurations starting from 449 

July 1st to the end of September are performed for the year of 2018 to assess their impacts of 450 

the updated CAPS on the predictive skill of sea ice at seasonal timescale. 451 

The results of prediction experiments show that the updated CAPS with improved 452 

physical parameterizations can better predict the evolution of the total ice extent compared with 453 

its predecessor described in Yang et al. (2020), though the predictions exhibit biases in regional 454 
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ice extent. We demonstrate that the CAPS can remain skillful beyond the designated period of 455 

Sea Ice Prediction Network (SIPN), which has potential values for stakeholders making 456 

decisions regarding the socioeconomical activities. Along with the improved predictive skill of 457 

total sea ice extent, the updated CAPS also has reduced biases in the predicted near surface air 458 

temperature, downward radiations at the surface, and sea surface temperature in Arctic domain 459 

compared to its predecessor. Based on the prediction experiments discussed in the paper, the 460 

configuration of the Y21_SIT experiment is assigned as the finalized CAPS version 1.0. 461 

Improving the representation of physical processes in the CAPS version 1.0 for further 462 

reducing the model bias will remain the main focus for the development of CAPS version 1.0. 463 

Since the CAPS version 1.0 is a regional modeling system, it relies on GCM forecasts as 464 

initial and lateral boundary conditions. That is, biases existed in GCM simulations (here the 465 

CFS forecast) can be propagated into and affect the entire area-limited domain (e.g., Bruyère 466 

et al., 2014; Rocheta et al., 2020; Wu et al., 2005). This issue can be a potential source that 467 

influences the predictive capability of CAPS version 1.0 for longer timescales. Studies have 468 

applied bias correction techniques with different complexities for improving the performance 469 

of regional modeling system (e.g., Bruyère et al., 2014; Colette et al., 2012; Rocheta et al., 470 

2017, 2020). Further investigation is needed to address biases inherited from GCM predictions 471 

through lateral boundaries for improving the predictive capability of CAPS version 1.0.  472 

 473 

  474 
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Code and data availability: The COAWST and CICE models are open source and can be 475 

downloaded from their developers at https://github.com/jcwarner-usgs/COAWST and 476 

https://github.com/CICE-Consortium/CICE, respectively. PDAF can be obtained from 477 

https://pdaf.awi.de/trac/wiki. CAPS v1.0 described in this paper is permanently archived at 478 

https://doi.org/10.5281/zenodo.5034971. The prediction data analyzed in this paper can be 479 

accessed from https://doi.org/10.5281/zenodo.4911415. 480 
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7. Tables 710 

Table 1 Difference in versions for the model components between the original and updated 711 

CAPS  712 

 Yang et al. (2020) This paper 

COAWST 3.1 3.5 

WRF 3.6.1 4.1.2 

ROMS 3.7 revision 748 3.8 revision 981 

CICE 5.1.2 6.0.0 

 713 

  714 
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Table 2 The summary of physic parameterizations used in the Y21_CRTL experiment  715 

WRF physics 

Cumulus parameterization Grell-Freitas (Freitas et al. 2018; 

improved from Y20) 

Microphysics parameterization Morrison 2-moment (Morrison et al. 

2009; same as Y20) 

Longwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Shortwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Boundary layer physics MYNN2 (Nakanishi and Niino, 2006; 

improved from Y20) 

Land surface physics Unified Noah LSM (Chen and Dudhia, 

2001; improved from Y20) 

  

ROMS physics 

Tracer advection scheme MPDATA (Smolarkiewicz, 2006; same 

as Y20) 

Tracer vertical mixing scheme GLS (Umlauf and Burchard, 2003; 

same as Y20) 
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Bottom drag scheme Quadratic bottom friction (QDRAG; 

(same as Y20) 

  

CICE physics 

Ice dynamics EVP (Hunke and Dukowicz, 1997; 

improved from Y20) 

Ice thermodynamics Bitz and Lipscomb (1999; same as 

Y20) 

Shortwave albedo Delta-Eddington (Briegleb and Light, 

2007; same as Y20) 

 716 

  717 
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Table 3 The summary of the prediction experiments and details of experiment designs. 718 

Note: All experiments use the CFS operational forecasts as initial and boundary conditions; VT: 719 

vertical transformation function; VS: vertical stretching function; SH94: stretching function of 720 

Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010). 721 

Experiment Physics Assimilation ROMS 

vertical 

coordinate 

Simulation 

period 

Y20 Physics (old version) 

listed in Table 2 

2 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y20_MOD Physics (old version) 

listed in Table 2 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_CTRL Physics (new version) 

listed in Table 2 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_VT Physics (new version) 6 localization radii VT 2 2018.07.01-
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listed in Table 2 SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VS S10 

ℎ𝑐 300m 

2018.10.01 

Y21_RP Advection: U3H/C4V 

Bottom drag: 

LOGDRAG 

 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_MUSHY Same physics as 

Y21_RP 

CICE: Mushy layer 

thermodynamics 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_ SIT Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_EXT-7 Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2019.01.31 

Y21_MAR-7 Same physics as 6 localization radii VT 2 2018.03.01-
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Y21_RP 

 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VS S10 

ℎ𝑐 300m 

2018.09.30 

 722 

  723 
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8. Figures 724 

 725 

Figure 1 The initial sea ice thickness after data assimilation with (a) 2 localization radii/1.5m 726 

ice thickness uncertainty, and (b) 6 localization radii/0.75m ice thickness uncertainty. 727 
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 729 

Figure 2 Time-series of Arctic sea ice extent for the observations (black line) and the ensemble-730 

mean of Y20 (blue line) and Y20_MOD (red line). 731 
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Figure 3 Top panel: Time-series of Arctic sea ice extent for the observations (black line) and 734 

the ensemble-mean of Y20_MOD (blue line) and Y21_CTRL (red line). Dashed and dotted 735 

lines are the climatology and the damped anomaly persistence predictions. Bottom panel: 736 

Time-series of the observed (black line) and the ensemble-mean of regional sea ice extents for 737 

Y20_MOD (blue line) and Y21_CTRL (red line). (a) Beaufort-Chukchi Seas, (b) East Siberian-738 

Laptev Seas, (c) Barents-Kara-Greenland Seas, and (d) Baffin Bay-Canadian Archipelago.  739 
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 740 

Figure 4 Monthly mean of sea ice concentration for (a) July, (b) August, (c) September of the 741 

NSIDC observations, and the difference between the predictions and the observations for (d) 742 

July, (e) August, (f) September of Y20_MOD, (g) July, (h) August, and (i) September of 743 

Y21_CTRL. Vertical/horizontal-line areas represent the difference of ice edge location (15% 744 

concentration). 745 
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  747 

Figure 5 ERA5 monthly mean of near-surface air temperature for (a) July, (b) August, and (c) 748 

September, the difference between Y20_MOD and ERA5 for (d) July, (e) August, (f) 749 

September, and the difference between Y21_CTRL and Y20_MOD for (g) July, (h) August, 750 

and (i) September. 751 
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 753 

Figure 6 Same as Figure 5, but for downward shortwave radiation at the surface. 754 
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 756 

Figure 7 Same as Figure 6, but for downward thermal radiation at the surface. 757 
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Figure 8 Same as Figure 3, but for Y21_CTRL (blue line), Y21_VT (green line), and Y21_RP 760 

(red line).  761 
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 762 

Figure 9 Monthly mean of sea ice concentration difference between the predictions and the 763 

observations for (a) July, (b) August, (c) September of Y21_VT, (d) July, (e) August, and (f) 764 

September of Y21_RP. Vertical/horizontal-line areas represent the difference of ice edge 765 

location (15% concentration). 766 
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 768 

Figure 10 Left panel: Monthly mean of sea surface temperature for (a) July, (b) August, (c) 769 

September of the OI SST, and the difference between the predictions and the observations for 770 

(d) July, (e) August, (f) September of Y20_MOD. Right panel: Monthly mean of sea surface 771 

temperature difference between Y21_CTRL and Y20_MOD for (g) July, (h) August, (i) 772 

September, and the difference between Y21_VT/Y21_RP and Y21_CTRL for (j) July, (k) 773 

August, (l) September of Y21_VT, (m) July, (n) August, and (o) September of Y21_RP. 774 
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 776 

Figure 11 Same as Figure 3, but for Y21_RP, Y21_MUSHY, and Y21_SIT. 777 
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779 

Figure 12 Monthly mean of sea ice thickness for (a) July, (b) August, and (c) September of 780 

Y21_RP, (d1) July, (e1) August, (f1) September of Y21_MUSHY, (d2) July, (e2) August, (f2) 781 

September of Y21_SIT, the difference between Y21_MUSHY and Y21_RP for (g1) July, (h1) 782 

August, and (i1) September, and the difference between Y21_SIT and Y21_RP for (g2) July, 783 

(h2) August, and (i2) September. 784 
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786 

Figure 13 Same as Figure 3, but for Y21_EXT-7. 787 
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789 

Figure 14 Same as Figure 3, bur for Y21_MAR-7. 790 
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