

- 1 CAPS v1.0: An improved regional coupled modeling system for Arctic sea ice and climate
- 2 simulation and prediction
- 3
- 4 Chao-Yuan Yang¹, Jiping Liu², Dake Chen¹
- 5
- 6 ¹School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and
- 7 Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- 8 ²Department of Atmospheric and Environmental Sciences, University at Albany, State
- 9 University of New York, Albany, NY, USA
- 10
- 11 Corresponding author:
- 12 Chao-Yuan Yang (yangchy36@mail.sysu.eu.cn) and Jiping Liu (jliu26@albany.edu)
- 13
- 14

15 Abstract

16 The updated Coupled Arctic Prediction System (CAPS) is evaluated, which is built on 17 new versions of Weather Research and Forecasting model (WRF), the Regional Ocean Modeling System (ROMS), the Community Ice CodE (CICE), and a data assimilation based 18 on the Local Error Subspace Transform Kalman Filter. A set of Pan-Arctic prediction 19 20 experiments with improved/changed physical parameterizations in WRF, ROMS and CICE as 21 well as different configurations are performed for the year 2018 to assess their impacts on the 22 predictive skill of Arctic sea ice at seasonal timescale. The key improvements of WRF, 23 including cumulus, boundary layer, and land surface schemes, result in improved simulation in 24 near surface air temperature and downward radiation. The major changes of ROMS, including 25 tracer advection and vertical mixing schemes, lead to improved evolution of the predicted total 26 ice extent (particularly correcting the late ice recovery issue in the previous CAPS), and 27 reduced biases in sea surface temperature. The changes of CICE, that include improved ice thermodynamics and assimilation of new sea ice thickness product, have noticeable influences 28 on the predicted ice thickness and the timing of ice recovery. Results from the prediction 29 30 experiments suggest that the updated CAPS can better predict the evolution of total ice extent 31 compared with its predecessor, though the predictions still have certain biases at the regional 32 scale. We further show that the CAPS can remain skillful beyond the melting season, which 33 may have potential values for stakeholders making decisions for socioeconomical activities in 34 the Arctic.

36 1. Introduction

37	Over the past few decades, the extent of Arctic sea ice has decreased rapidly and entered
38	a thinner/younger regime associated with global climate change (e.g., Kwok, 2018; Serreze
39	and Meier, 2019). The drastic changes in the properties of Arctic sea ice have captured
40	attentions of a wide range of stakeholders, such as trans-Arctic shipping, natural resource
41	exploration, and activities of coastal communities relying on sea ice (e.g., Newton et al., 2016).
42	This leads to increasing demands on skillful Arctic sea ice prediction, particularly at seasonal
43	timescale (e.g., Jung et al., 2016; Liu et al., 2019; Stroeve et al., 2014). However, Arctic sea
44	ice prediction based on different approaches (e.g., statistical method and dynamical model)
45	submitted to the Sea Ice Outlook, a community effort managed by the Sea Ice Prediction
46	Network (SPIN, <u>https://www.arcus.org/sipn</u>), shows substantial biases in the predicted seasonal
47	minimum of Arctic sea ice extent compared to the observations for most years since 2008 (Liu
48	et al., 2019; Stroeve et al., 2014). The skills of coupled climate models (GCMs) in predicting
49	Pan-Arctic sea ice extent have been assessed with suites of hindcasts, and these studies
50	suggested that GCMs have skill in predicting ice extent at lead times of 1-6 months (e.g.,
51	Blanchard-Wrigglesworth et al., 2015; Chevallier et al., 2013; Guemas et al., 2016; Merryfield
52	et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Sigmond et al., 2013; Wang et al., 2013;
53	Zampieri et al., 2018). Moreover, studies using a "perfect model" approach, which examines
54	the skill of a model predicting itself, suggested that Arctic sea ice cover can be potentially
55	predictable up to two years in advance (e.g., Blanchard-Wrigglesworth et al., 2011; Blanchard-
56	Wrigglesworth and Bushuk, 2018; Day et al., 2016; Germe et al., 2014; Tietsche et al., 2014).

57	The gap between actual predictive skill with dynamical models and theoretical predictability
58	suggested by "perfect model" studies may be related to inaccurate initial conditions and/or
59	inadequate physical parameterizations in dynamical models (Stroeve et al., 2015).
60	Recently, we have developed an atmosphere-ocean-sea ice regional coupled modeling
61	system, hereafter called Coupled Arctic Prediction System (CAPS), for seasonal Arctic sea ice
62	and climate prediction (Yang et al., 2020, hereafter Y20). To improve the accuracy of initial
63	sea ice conditions, CAPS employs an ensemble-based data assimilation system to assimilate
64	satellite-based sea ice observations. Seasonal Pan-Arctic sea ice predictions with improved
65	initial sea ice conditions conducted in Y20 have shown that CAPS has potential to provide
66	skillful Arctic sea ice predictions at seasonal timescale.
67	With recent improvements in the model components of CAPS, this paper gives a
68	description of the updated CAPS, and presents the assessment of seasonal Arctic sea ice
69	predictions associated with improved/changed physical parameterizations. This paper is
70	structured as follows. Section 2 provides an overview of the CAPS, including major
71	changes/improvements in the model components compared to its predecessor described in Y20,
72	as well as the data assimilation system and the assimilation procedures. Section 3 describes the
73	designs of the prediction experiments, and examines the performance of the updated CAPS
74	associated with major changes/improvements in the model components. Some discussions and
75	concluding remarks and are given in section 4 and 5.

76 2. Coupled Arctic Prediction System (CAPS)

As described in Y20, to enhance our ability to predict seasonal Arctic sea ice as well as

78	climate, we have developed CAPS by coupling the Community Ice CodE (CICE) with the
79	Weather Research and Forecasting Model (WRF) and the Regional Ocean Modeling System
80	(ROMS) based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST)
81	modeling framework (Warner et al., 2010). The advantage of CAPS is its model components
82	have different physics options for us to choose. With community efforts on improving the WRF,
83	ROMS, and CICE models, in this study, we update CAPS based on newly-released WRF,
84	ROMS, and CICE models for further development of our Arctic sea ice prediction system.
85	Table 1 provides the versions for these model components between this paper and Y20. The
86	same physical parameterizations described in Y20 are used here for the control simulation, but
87	some of them are improved as the WRF, ROMS, and CICE models released their new versions
88	(see Table 2). Major changes in physics parameterization and the model infrastructure in the
89	WRF, ROMS, and CICE models are described below.

90 2.1. Model components and updates

WRF: The WRF model (Skamarock et al., 2005) is a non-hydrostatic and quasi-91 92 compressible model, which uses hybrid vertical coordinate with the top of the model at 50 mb 93 and the Arakawa C-grid in horizontal. The Rapid Refresh (RAP) system, a high-frequency, 94 continental-scale weather prediction/assimilation modeling system operational at the National Centers for Environmental Prediction (NCEP), has made some improvements in the WRF 95 model physics (Benjamin et al., 2016). The official release of WRF model since version 3.9 96 97 has adapted these modified physics parameterizations in the RAP system, including the Grell-98 Freitas convection scheme (GF) and the Mellor-Yamada-Nakanishi-Niino planetary boundary

99	layer (PBL) scheme (MYNN) as the replacement of original schemes in the WRF model. For
100	the GF scheme, the major improvements compared to the original scheme (Grell and Freitas,
101	2014) include: 1) a beta probability density function used as the normalized mass flux profile
102	for representing height-dependent entrainment/detrainment rates within statistical-averaged
103	deep convective plumes, and 2) the European Centre for Medium-Range Weather Forecasts
104	(ECMWF) approach used for momentum transport due to convection (Biswas et al. 2020;
105	Freitas et al. 2018). For the MYNN scheme, compared to the original scheme (Nakanishi and
106	Nino, 2009), the RAP system improved the mixing-length formulation and removed numerical
107	deficiencies to better represent subgrid-scale cloudiness (Benjamin et al. 2016, see Append. B).
108	For the Noah land surface model (Chen and Dudhia, 2001), some issues including
109	discontinuous behavior for soil ice melting and negative moisture fluxes over glacial and sea
110	ice, as well as minor issues associated with snow melting have been fixed since the release of
111	WRF version 3.9.

112 ROMS: The ROMS model is a terrain-following and free-surface model, which solves three-dimensional Reynolds-averaged Navier-Stokes equations with the hydrostatic and 113 Boussinesq approximation (Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008). In the 114 115 vertical, the equations are discretized over bottom topography with stretching terrain-following 116 coordinates (Song and Haidvodel, 1994). In the horizontal, the ROMS model uses boundaryfitted, orthogonal curvilinear coordinates on a staggered Arakawa C-grid. In the updated CAPS, 117 118 the major change in the latest ROMS model is associated with surface heat/freshwater fluxes 119 and their coupling to other model components. This change prevents the potentially erroneous

120	results when the ROMS timestep is smaller than the coupling frequency with other model
121	components. Other changes in the ROMS model of the updated CAPS can be found in the
122	ROMS distribution website (https://www.myroms.org/projects/src/report/4 Ticket #654 to
123	#824).

124 CICE: The CICE model is designed to be a sea ice model component for global coupled climate models. Its dynamic core simulates the movement of sea ice based on forces from the 125 atmosphere, the ocean, and Earth's rotation and the material strength of the ice. The new feature 126 of CICE version 6.0.0 contains an independent software package, Icepack, to provide the 127 column physics code for all thermodynamic parameterizations in a single grid-cell. These 128 129 parameterizations include the MUSHY-layer ice thermodynamics (Turner et al., 2013) that 130 resolves prognostic vertical temperature and salinity profiles. The new version of CICE also 131 includes improvements in sea ice rheology and a new landfast-ice parameterization (Lemieux 132 et al., 2016). More details can be found in the CICE Consortium GitHub page 133 (https://github.com/CICE-Consortium).

134 **2.2. Data Assimilation and evaluation data**

As described in Y20, the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 2013) was implemented in CAPS for assimilating sea ice observations, which provides a variety of optimized ensemble-based Kalman filters including the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007), the Localized Singular Evolutive Interpolated Kalman (LSEIK; Nerger et al., 2006), and the Local Error Subspace Transform Kalman Filter (LESTKF; Nerger et al., 2012). Following Y20, the LESTKF is used to assimilate satellite-

141	observed sea ice parameters. The LESTKF projects the ensemble onto the error subspace and
142	then directly computes the ensemble transformation in the error subspace. This results in better
143	assimilation performance compared to the LSEIK filter and higher computational efficiency
144	compared to the LETKF as discussed in Nerger et al. (2012).
145	The initial ensembles are generated by applying the second-order exact sampling (Pham,
146	2001) to sea ice state vectors (ice concentration and thickness) from an one-month free run,
147	and assimilating sea ice observations that include: 1) the near real-time daily Arctic sea ice
148	concentration processed by the National Aeronautics and Space Administration (NASA) Team
149	algorithm (Maslanik and Stroeve, 1999) obtained from the National Snow and Ice Data Center
150	(NSIDC; https://nsidc.org/data/NSIDC-0081/), 2) a combined monthly sea ice thickness
151	derived from the CryoSat-2 (Laxon et al., 2013; obtained from http://data.seaiceportal.de), and
152	daily sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS; Kaleschke
153	et al., 2012; Tian-Kunze et al., 2014; obtained from https://icdc.cen.uni-hamburg.de/en/l3c-
154	smos-sit.html). To address the issue that sea ice thickness derived from CyroSat-2 and SMOS
155	are unavailable during the melting season, the melting season ice thickness is estimated based
156	on the seasonal cycle of the Pan-Arctic Ice Ocean Modeling and Assimilation System
157	(PIOMAS) daily sea ice thickness (Zhang and Rothrock, 2003) as described in Y20.
158	In this study, compared with Y20, we change the localization radius from 2 to 6 grids
159	during the assimilation procedures. The sea ice component in the updated CAPS experienced
160	some instability at initial simulations with 2 localization radii but not with 6 localization radii.

161 Figure 1 shows that initial sea ice thickness after the data assimilation with (a) 2 localization

162	radii and 1.5 m uncertainty for assimilating ice thickness and (b) 6 localization radii and 0.75
163	m uncertainty. The initial ice thickness for both configurations has similar spatial distribution.
164	However, the ice thickness with 2 localization radii and 1.5 m uncertainty shows discontinuous
165	features (Fig. 1a), which results in numerical instability during the initial model integration.
166	Such discontinuous feature is obviously corrected with 6 localization radii and 0.75 m
167	uncertainty (Fig. 1b). Following Y20, here we test the 2018 prediction experiment with 2 and
168	6 localization radii but the same uncertainty for ice thickness (0.75m) for the data assimilation
169	(Y20 and Y20_MOD, see Table 3). The Y20 and Y20_MOD experiments show very similar
170	temporal evolutions of the total sea ice extent, although Y20_MOD (red solid line) predicts
171	slightly less ice extent than that of Y20 (blue line) for the July experiment (Figure 2). In this
172	study, the configuration of Y20_MOD is designated as the reference for the following
173	assessment of the updated CAPS.

174 For the evaluation of sea ice prediction, Sea Ice Index (Fetterer et al., 2017; obtained from https://nsidc.org/data/G02135) is used as the observed total sea ice extent, and the NSIDC sea 175 ice concentrations derived from Special Sensor Microwave Imager/Sounder (SSMIS) with the 176 NASA Team algorithm (Cavalieri et al., 1996; obtained from https://nsidc.org/data/nsidc-0051) 177 178 is employed. For the assessment of the atmospheric and oceanic variables, the ECMWF 179 (ERA5; reanalysis version 5 Hersbach 2020; obtained et al., from 180 https://cds.climate.copernicus.eu) and National Oceanic and Atmospheric Administration 181 (NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) (Reynolds et al., 2007; 182 obtained from https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) are utilized.

183 **3. Model Evaluation**

184 **3.1. Experiment designs**

Following Y20, the model domain includes 319 (449) x- (y-) grid points with a ~24 km 185 186 grid spacing for all model components (see Figure 2 in Y20). The WRF model uses 50 vertical levels, the ROMS model uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow 187 188 layer, and 5 categories of sea ice thickness. The coupling frequency across all model 189 components is 30 minutes. Initial and boundary conditions for the WRF and ROMS models are 190 generated from the Climate Forecast System version 2 (CFSv2, Saha et al., 2014) operational 191 forecast archived at NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). Sea ice 192 initial conditions are generated from the data assimilation described in section 2.2. Ensemble 193 predictions with 8 members are conducted. A set of numerical experiments for the Pan-Arctic seasonal sea ice prediction with different configurations, starting from July 1st to October 1st 194 195 for the year of 2018, has been conducted. Table 3 provides the details of these experiments that 196 allow us to examine impacts of improved/changed physical parameterizations in the updated 197 CAPS on sea ice prediction at seasonal timescale.

198 **3.2. Impacts of the RAP physics in the WRF model**

To examine the performance the updated CAPS compared to its predecessor in Y20, the Y21_CTRL experiment uses some updated physics configurations in the WRF model as listed in Table 2. The temporal evolution of the ensemble mean of the predicted Arctic sea ice extent for the Y21_CTRL and Y20_MOD experiments along with the NSIDC observations are shown in Figure 3. The ice extent is calculated as the sum of area of all grid cells with ice concentration

204	greater than 15%. Besides the total ice extent, we also calculate ice extent for the following
205	subregions: 1) Beaufort and Chukchi Seas (120W-180, 60N-80N), 2) East Siberian and Laptev
206	Seas (90E-180, 60N-80N), 3) Barents, Kara, and Greenland Seas (30W-90E, 60N-80N), 4)
207	Canadian Archipelago and Baffin Bay (30W-120W, 60N-80N). To further assess the predictive
208	skill of our predictions, here we also show the climatology prediction (CLIM, the period of
209	1998-2017) and the damped anomaly persistence prediction (DAMP). Following Van den Dool
210	(2006), the DAMP is generated from the initial sea ice extent anomaly (relative to the 1998-
211	2017 climatology) scaled by the autocorrelation and the ratio of standard deviation between
212	different lead times and initial times (see the DAMP equation in Y20).
213	Compared to the Y20_MOD experiment, the Y21_CTRL experiment has \sim 0.5 million km ²
214	more ice extent at the initial, but the ice in Y21_CTRL melts faster than Y20_MOD during the
215	first 2-week integration. After that, they track each other closely, and predict nearly the same
216	minimum ice extent (~4.3 million km ²). Like Y20_MOD, Y21 still has a delayed ice recovery
217	in late September. Compared with the CLIM/DAMP predictions (black dashed and dotted
218	lines), both Y20_MOD and Y21_CTRL have smaller biases after early August. At the regional
219	scale, in the Beaufort-Chukchi Seas, Y21_CTRL predicts slower ice retreat after late July than
220	that of Y20_MOD, whereas in the East Siberian-Laptev Seas, Y20_MOD shows slower ice
221	decline after mid-July than that of Y21_CTRL (Fig. 3a, 3b). Both Y20_MOD and Y21_CTRL
222	agree well with the observations in the Barents-Kara-Greenland Seas (Fig. 3c). In the Baffin
223	Bay-Canadian Archipelago, both Y20_MOD and Y21_CTRL have similar temporal evolution
224	but show systematic underestimation of the observed areal extent (\sim 0.3 million km ² , Fig. 3d).

- This underestimation is partly due to the difference in land/sea mask (particularly in the Canadian Archipelago) between our model grid and the NSIDC grid (not shown).
- 227 Figure 4 shows the spatial distribution of the NSIDC sea ice concentration and the 228 difference between the predicted sea ice concentration and the observations for all grid cells 229 that the predictions and the observations both have at least 15% ice concentration for the Y20 MOD and Y21 CTRL experiments. The vertical and horizontal lining areas represent 230 difference of the ice edge location. The distribution of the predicted ice concentration 231 232 anomalies resembles in both Y20 MOD and Y21 CTRL experiments, except Y21 CTRL 233 predicts relatively higher ice concentration in much of the Beaufort, Chukchi, and East Siberian 234 Seas for the entire period (Fig. 4d-i).

235 In a fully coupled predictive model, sea ice is determined by the fluxes from the atmosphere above and the ocean below. The major difference between Y20 MOD and 236 237 Y21 CTRL is the RAP physics improvements in the WRF model. The RAP physics 238 improvements can have profound influence on the behavior of simulated atmospheric variables 239 (i.e., radiation, temperature, humidity, precipitation, and wind). Figure 5 shows the spatial 240 distribution of the ERA5 2m air temperature (T2), the predicted anomalies (ensemble mean minuses ERA5) of Y20 MOD, and the difference between Y21_CTRL and Y20_MOD. For 241 242 Y20 MOD, the predicted air temperature in July has small cold (warm) biases over all ocean 243 basins (northern Greenland and eastern coastal Siberia), small-to-moderate cold biases (~3-5 244 degrees) over Canada and Siberia, and moderate-to-large cold biases (~6-9 degrees) over 245 eastern Europe (Fig. 5d). In August (Fig. 5e), the cold biases over most of the model domain

246	are increased. In particular, very large cold bias (over 10 degrees) are located over east Siberia.
247	In September, these cold biases are decreased, and warm biases are found in the north of
248	Greenland and Canada (Fig. 5f). With the adaptation of the RAP physics in the updated WRF
249	model, Y21_CTRL, in general, produces a warmer state in most of the model domain compared
250	to that of Y20_MOD during the entire prediction period. For July (Fig. 5g), the predicted air
251	temperature is slightly warmer (< 1 degrees) over the Arctic Ocean, the Pacific, and Atlantic
252	sectors, moderately warmer (~1-2 degrees) over the Siberia coast and Canadian Archipelago,
253	but the slightly colder (<1 degrees) over northeastern Europe and northern Canada than that of
254	Y20_MOD. For August (Fig. 5h), the Arctic Ocean and Atlantic sector (the Pacific sector and
255	northern Canada) are relatively warmer (colder) than that of Y20_MOD. Excessive cold biases
256	shown in Y20_MOD over Siberia are reduced notably (~2.5-4 degrees) in Y21_CTRL. As
257	discussed above, Y21_CTRL has faster ice melting in the East Siberian-Laptev Seas, which
258	can be partly attributed to the changes in the predicted air temperature.

259 Figure 6 and Figure 7 shows the spatial distribution of the ERA5 downward solar and thermal radiation at the surface (SWDN and LWDN), the predicted anomalies (ensemble mean 260 minuses ERA5) of Y20_MOD, and the difference between Y20_MOD and Y21_CTRL. For 261 July, Y20 MOD (Fig. 6d) results in less SWDN over most of ocean basins, southern Canada, 262 western Siberia, and eastern Europe while more SWDN over southern and eastern Siberia, 263 264 Canadian Archipelago, and northern Canada compared with ERA5. For August and September (Fig. 6e-f), the spatial distribution, in general, is similar to that of July, except that eastern 265 Siberia, Canadian Archipelago and northern Canada have opposite sign. It also shows that the 266

267	magnitude of biases decreases as the lead time decreases. With the RAP physics in the
268	Y21_CTRL experiment, large areas have smaller biases compared with Y20_MOD in July (i.e.,
269	the positive difference between Y21_CTRL and Y20_MOD corresponds to the negative biases
270	in Y20_MOD), except the north Pacific (especially the Sea of Okhotsk), southern Canada, and
271	the central coastal Siberia (Fig. 6g). For August (Fig. 6h), there are more areas with smaller
272	biases, but the north Pacific and southern Canada still have larger biases. In contrast to SWDN,
273	the biases of LWDN shown in Y20_MOD has smaller magnitude (up to 100 W/m2 in SWDN
274	vs. 50 W/m2 in LWDN) for the entire prediction period (Fig. 7d-f). For July, Y20_MOD (Fig.
275	7d) shows less LDWN over most of the model domain compared with ERA5, except the
276	Atlantic sector and north of Greenland. For August, areas with negative biases expand and the
277	magnitude of biases increases (particularly in eastern and southern Siberia) compared with that
278	of July (Fig. 7e). For September (Fig. 7f), the spatial distribution of LWDN is mostly similar
279	to that of July, except that northern Canada and Canadian Archipelago show positive biases.
280	The Y21_CTRL experiment with the RAP physics tends to reduce the negative biases shown
281	in Y20_MOD, especially the negative biases over Siberia in August and September (Fig. 7g-i).
282	Associated with the change in surface fluxes, compared to Y20_MOD, Y21_CTRL shows
283	warmer SST along the ice edge in July, and the warm difference along the ice edge becomes
284	larger (particularly near the east Siberian coast) in August and September. The other areas in
285	Y21_CTRL are mostly with less than 0.2 degrees difference relative to Y20_MOD (Fig. 10g-
286	i).

287 3.3. ROMS configuration

288

289	coordinate, but currently has two vertical coordinate transformations:
306	$z(x, y, \sigma, t) = S(x, y, \sigma) + \zeta(x, y, t) \left[1 + \frac{S(x, y, \sigma)}{h(x, y)} \right] $ (1) $S(x, y, \sigma) = h_c \sigma + [h(x, y) - h_c]C(\sigma)$
290	or
307	$z(x, y, \sigma, t) = \zeta(x, y, t) + [\zeta(x, y, t) + h(x, y)]S(x, y, \sigma)$ $S(x, y, \sigma) = \frac{h_c \sigma + h(x, y)C(\sigma)}{h_c + h(x, y)} $ (2)
291	where $S(x, y, \sigma)$ is a nonlinear vertical transformation function, $\zeta(x, y, t)$ is the free-surface,
292	$h(x, y)$ is the unperturbed water column thickness, $C(\sigma)$ is the non-dimensional, monotonic,
293	vertical stretching function, and h_c controls the behavior of the vertical stretching. In Y20, we
294	used the transformation (1) and the vertical stretching function introduced by Song and
295	Haidvogel (1994) as the setup for seasonal Arctic sea ice prediction. However, the vertical
296	transformation (1) has an inherent limitation for the value of h_c (expected to be the
297	thermocline depth), which must be less than or equal to the minimum value in $h(x, y)$. As the
298	result, h_c was chosen as 10 meters due to the limitation of the minimum value in $h(x, y)$ in
299	Y20. This limitation is removed with the vertical transformation (2) and h_c can be any
300	positive value. Currently, the vertical transformation (2) and the vertical stretching function
301	introduced by Shchepetkin (2010, the function in a research version of ROMS developed at
302	University of California, Los Angeles, https://www.myroms.org/wiki/Vertical_S-coordinate)
303	are employed. The Y21_VT experiment is designed to examine the impacts of the vertical
304	transformation in the ROMS model on seasonal sea ice prediction by using the vertical
305	transformation (2), the Shchepetkin stretching function, and 300 meters for h_c .

As described in section 2, the ROMS model uses a generalized topography-following

308	In pervious sensitivity experiments to determine the choice of ROMS physical
309	parametrizations listed in Table 2, we noticed that the tracer advection and the vertical mixing
310	schemes have important effects on sea ice simulation. Thus here the Y21_RP experiment is
311	designated to further explore the influence of these schemes in the updated CAPS, in which the
312	tracer advection scheme is changed from Multidimensional positive definite advection
313	transport algorithm (MPDATA; Smolarkiewicz, 2006) to the third-order upwind horizontal
314	advection (U3H; Rasch, 1994; Shchepetkin, and McWilliams, 2005) and the fourth-order
315	centered vertical advection schemes (C4V; Shchepetkin, and McWilliams, 1998; 2005).
316	The temporal evolutions of the ensemble mean of the predicted Arctic total sea ice extent
317	(as well as regional ice extent) for Y21_CTRL, Y21_VT, and Y21_RP are shown in Figure 8.
318	Y21_VT (green line) simulates slightly less areal extent (<0.1 million km ²) compared to that
319	of Y21_CTRL throughout the prediction period. The Y21_RP shows highly similar temporal
320	evolution of areal extent as Y21_CTRL until near the end of August. After that, the ice melting
321	slows down and ice extent begins to recover earlier in Y21_RP (red line) compared to both
322	Y21_CRTL and Y21_VT, which leads to much smaller biases in seasonal minimum ice extent
323	relative to the observation. This result suggests the delayed ice recovery in late September
324	shown in Y20, Y20_MOD and Y21_CTRL is partly due to the choice of ocean advection and
325	vertical mixing schemes that change the behavior of oceanic state. Y21_RP also shows much
326	better predictive skill after late August compared with the CLIM/DAMP predictions (black
327	dashed and dotted lines). At the regional scale, changes in both the ocean vertical coordinate
328	(Y21_VT) and the advection and vertical mixing scheme (Y21_RP) do not significantly affect

329	the evolution of areal extent in the Barents-Kara-Greenland Seas and the Baffin Bay-Canadian
330	Archipelago compared to that of Y21_CTRL (Fig. 8c, d). However, Y21_VT agrees better with
331	the observations in the Beaufort-Chukchi Seas and the East Siberian-Laptev Seas compared to
332	that of Y21_CTRL and the ice extent of Y21_RP stops retreating after mid-September in the
333	Beaufort-Chukchi Seas relative to that of Y21_CTRL (Fig. 8a, b).
334	Spatially, the choice of vertical transformation in Y21_VT does not significantly change
335	the distribution of sea ice biases in Y21_CTRL (i.e., higher ice concentration in the Pacific
336	sector, and lower ice concentration in the Atlantic sector, (Fig. 9a-c, Fig. 4g-i). The Y21_VT
337	experiment has slightly lower ice concentration compared with that of Y21_CTRL, which
338	corresponds to less areal extent of Y21_VT shown in Figure 8. By using U3H/C4V advection
339	scheme, the Y21_RP experiment has positive anomalies for most ice-covered areas (Fig. 9d-f).
340	For September, the Y21_RP experiment better predicts the ice edge location in the Atlantic
341	sector of the Arctic Ocean (i.e., smaller areas with horizontal/vertical lining) compared to the
342	experiments described above (Fig. 9f).
343	Figure 10 shows that spatial distribution of the SST changes of Y21_VT and Y21_RP
344	relative to Y21_CTRL (as well as predicted anomalies of Y20_MOD and the difference
345	between Y21_CTRL and Y21_MOD). By using different vertical transformation in the ROMS
346	model, the Y21_VT experiment simulates slightly warmer SST in the north Pacific and Atlantic
347	(~0.5 degree), and colder SST in the Bering Sea, Sea of Okhotsk, Barents-Kara, and Greenland

- 348 Seas (~0.5-1.0 degree). We also note that SST under sea ice cover is warmer than that of
- 349 Y21 CTRL, especially in the Beaufort-Chukchi Seas, which results in larger temperature

350	difference and thus heat fluxes at the ice-ocean interface, and then contributes to faster ice
351	retreating in the Beaufort-Chukchi Seas (Fig. 10j-l, Fig. 8a). With U3H/C4V tracer advection
352	scheme in Y21_RP, cold biases shown in Y21_CTRL (Fig. 10d-i) are reduced significantly in
353	the north Pacific and Atlantic, but SST under ice cover is slightly colder than that of Y21_CTRL
354	(Fig. 10m-o).
355	3.4. CICE configuration and ice thickness assimilation
356	In Y20, we used the ice thermodynamics introduced by Bitz and Lipscomb (1999;
357	hereafter BL99), which assumes a fixed vertical salinity profile based on observations, as the
358	setup for seasonal Arctic sea ice prediction. Since the release of CICE version 5, it includes the
359	MUSHY-layer ice thermodynamics introduced by Turner et al. (2013), which simulates
360	vertically resolved and time-varying prognostic salinity and its associated impact on other
361	thermodynamics properties of sea ice. In the Y21_MUSHY experiment, we change ice
362	thermodynamics from BL99 to MUSHY (Table 3) to examine whether improved ice
363	thermodynamics has noticeable influence on sea ice prediction at seasonal timescale.
364	Additionally, in Y20 and prediction experiments discussed above, we use a simple approach to
365	merge CryoSat-2 and SMOS ice thickness by replacing ice thickness less than 1m in CryoSat-
366	2 data with SMOS data for ice thickness assimilation. Ricker et al. (2017) presented a new ice
367	thickness product (CS2SMOS) based on the optimal interpolation to statistically merge CrySat-
368	2 and SMOS data. The Y21_SIT experiment (Table 3) is designed to investigate the impacts of
369	assimilating different approaches to merge CyroSat-2 and SMOS data on sea ice prediction .
370	Figure 11 shows the temporal evolutions of the ensemble mean of the predicted Arctic

371	total sea ice extent (as well as regional ice extent) for the Y21_RP, Y21_MUSHY, and Y21_SIT
372	experiments. All three experiments predict almost identical total ice extents during the first 2-
373	week integration. After that, Y21_MUSHY (red solid line) produces a slightly more ice extent
374	(~0.2 million km ²) than that of Y21_RP (blue solid line) for the rest of integration, which
375	mainly due to an increase of sea ice in the East Siberian-Laptev Seas (Fig. 11b). The timing of
376	minimum ice extent occurs early in Y21_MUSHY relative to Y21_RP, resulting in early
377	recovery. In contrast to Y21_RP, Y21_SIT (green solid line) simulates slightly larger ice extent
378	after the first week of August. At the regional scale, compared with Y21_RP, Y21_SIT predicts
379	more ice before the mid-August and less ice after that in the Beaufort-Chukchi Seas (Fig. 11a)
380	and larger ice extent throughout the entire prediction period in the Barents-Kara-Greenland
381	Seas (Fig. 11c). For the spatial distribution of ice concentration anomalies, Y21_MUSHY and
382	Y21_SIT show similar distribution as Y21_RP with slightly higher ice concentration at
383	gridpoint scale (not shown).

384 Figure 12 show the ensemble mean of predicted sea ice thickness of the Y21_RP, Y21 MUSHY, and Y21 SIT experiments and the ice thickness changes of Y21 MUSHY and 385 Y21_SIT relative to Y21_RP. All three experiments produce similar ice thickness distribution, 386 that is the thickest ice locates near the Canadian Archipelago and the Lincoln Sea, as well as 387 the thickness gradient directs toward the Siberia coast (Fig. 12a-f). Compared with Y21 RP, 388 Y21 MUSHY simulates thicker ice (from ~0.14m in July to over 0.2m in September) in the 389 390 Canadian Arctic and the central Arctic Ocean, thinner ice (over 0.2m) in the Kara Sea in 391 September, and negligible thickness difference in other areas (Fig. 12g1-i1). This is consistent

392	with previous studies showing that the Mushy-layer thermodynamics simulates thicker ice than
393	BL99 thermodynamics in both standalone CICE (Turner and Hunke, 2015) and the fully-
394	coupled context (Bailey et al., 2020). Compared with Y21_RP, Y21_SIT predicts thicker ice
395	most of the ice edge zone and thinner ice in the central Arctic Ocean in July and August. In
396	September, Y21_SIT simulates much thinner ice (over 0.2m) in the Beaufort, Chukchi, East
397	Siberian Seas, and the central Arctic Ocean along with thicker ice in the Barents, Kara, and
398	Laptev Seas (Fig. 12g ₂ -i ₂). The evolution of predicted ice thickness in Y21_SIT corresponds to
399	that of regional ice extent shown in Figure 11. This result suggests that assimilating the new
400	ice thickness product (CS2SMOS) have significant influences on the predicted ice thickness at
401	the regional scale.

402 4. Discussions

403 Arctic sea ice prediction experiments conducted in this study follow the protocol of Sea Ice Prediction Network (SPIN), in which the outlook start from June 1st, July 1st, and August 404 1st to predict seasonal minimum of ice extent in September. Due to the socioeconomic impacts 405 406 of sea ice recovery during the freeze-up period (e.g., trans-Arctic shipping, coastal activities), 407 it is also essential to investigate the predictive capability of CAPS beyond the SPIN prediction period. Combining the entire prediction period provided by CFS forecasts and the Y21 SIT 408 409 experiment, the Y21 EXT-7 experiment is designed to extend the prediction period to the end 410 of January next year (Table 3). Figure 13 shows the temporal evolutions of the ensemble mean 411 of the predicted Arctic total sea ice extent (as well as regional ice extent) for the Y21 EXT-7 412 experiment. As shown in Figure 13, the predicted total ice extent exhibits reasonable evolution

413	in terms of seasonal minimum and timing of recovery compared with the observations until
414	late November. Y21_EXT-7 also performs better than that of the CLIM/DAMP predictions
415	(black dashed and dotted lines) until mid-to-late November. After that, Y21_EXT-7
416	overestimates the total ice extent compared with the observations, and this overestimation is
417	largely contributed by more extensive sea ice in the Barents-Kara-Greenland Seas (Fig. 13c).
418	The overestimated ice cover in the Barents-Kara-Greenland Seas may be the results of biases
419	from the CFS data propagated into the model domain through lateral boundary conditions and
420	accumulated effects of biases in model components.

A growing number of studies have shown evidences of Arctic sea ice spring predictability 421 422 barrier, which is defined as a springtime date that predictions initialized prior to this date have 423 much lower predictive skill than predictions initialized after/on that date (e.g., Bonan et al., 424 2019; Bushuk et al., 2017; 2018; Day et al., 2014). To investigate the predictive capability of CAPS initialized prior to the summer melting season, the Y21 MAR-7 experiment is initialized 425 on March 1st, 2018 and predicts sea ice evolution until the end of September (Table 3). Figure 426 427 14 shows the temporal evolutions of the ensemble mean of the predicted Arctic total sea ice 428 extent (as well as regional ice extent) for the Y21 MAR-7 experiment. The evolution of 429 predicted total sea ice extent shows faster ice melting rate than the observations after mid-May, 430 slower ice retreating after mid-July, and the predicted minimum of ice extent has an 431 overestimation (\sim 1.2 million km²) compared to the observed minimum. In contrast to 432 Y21 MAR-7, the DAMP prediction (black dotted line) agrees better with the observations 433 throughout the 7-month prediction period. At the regional scale, Y21 MAR-7 shows abrupt ice

434	decline after May in the Beaufort-Chukchi Seas (Fig. 14a), and this decline is mainly
435	contributed by ice melting along the Alaskan coast (not shown). Sea ice in the East Siberian-
436	Laptev Seas exhibits slow melting after July (Fig. 14b), and ice cover areas still connect to the
437	Siberian coast, which is different from the observations (not shown). For the Barents-Kara-
438	Greenland Seas (Baffin Bay-Canadian Archipelago), there are systematic overestimations
439	(underestimations) throughout the entire prediction period (Fig. 14c-d). Bushuk et al. (2020)
440	suggested that Arctic sea ice predictability prior to the barrier date is mainly limited by synoptic
441	events, which are only predictable for few weeks, whereas the predictability after the barrier
442	date is enhanced by ice-albedo feedback with the onset of ice melting.

443 5. Conclusions

444 This paper presents and evaluates the updated Coupled Arctic Prediction System (CAPS) 445 designated for Arctic sea ice and climate prediction. The CAPS consists of the WRF, ROMS, and CICE models under the framework of the COAWST system, as well as data assimilation 446 system based on the localized error subspace transform ensemble Kalman filter to assimilate 447 448 satellite-observed sea ice observations. A set of Pan-Arctic prediction experiments with 449 improved/changed physical parameterizations as well as different configurations starting from 450 July 1st to the end of September are performed for the year of 2018 to assess their impacts of 451 the updated CAPS on the predictive skill of sea ice at seasonal timescale.

The results of prediction experiments show that the updated CAPS with improved physical parameterizations can better predict the evolution of the total ice extent compared with its predecessor described in Yang et al. (2020), though the predictions exhibit biases in regional

455	ice extent. We demonstrate that the CAPS can remain skillful beyond the designated period of
456	Sea Ice Prediction Network (SIPN), which has potential values for stakeholders making
457	decisions regarding the socioeconomical activities. Along with the improved predictive skill of
458	total sea ice extent, the updated CAPS also has reduced biases in the predicted near surface air
459	temperature, downward radiations at the surface, and sea surface temperature in Arctic domain
460	compared to its predecessor. Based on the prediction experiments discussed in the paper, the
461	configuration of the Y21_SIT experiment is assigned as the finalized CAPS version 1.0.
462	Improving the representation of physical processes in the CAPS version 1.0 for further
463	reducing the model bias will remain the main focus for the development of CAPS version 1.0.
464	Since the CAPS version 1.0 is a regional modeling system, it relies on GCM forecasts as
465	initial and lateral boundary conditions. That is, biases existed in GCM simulations (here the
466	CFS forecast) can be propagated into and affect the entire area-limited domain (e.g., Bruyère
467	et al., 2014; Rocheta et al., 2020; Wu et al., 2005). This issue can be a potential source that
468	influences the predictive capability of CAPS version 1.0 for longer timescales. Studies have
469	applied bias correction techniques with different complexities for improving the performance
470	of regional modeling system (e.g., Bruyère et al., 2014; Colette et al., 2012; Rocheta et al.,
471	2017, 2020). Further investigation is needed to address biases inherited from GCM predictions
472	through lateral boundaries for improving the predictive capability of CAPS version 1.0.
473	

475	Code and data availability: The COAWST and CICE models are open source and can be
476	downloaded from their developers at https://github.com/jcwarner-usgs/COAWST and
477	https://github.com/CICE-Consortium/CICE, respectively. PDAF can be obtained from
478	https://pdaf.awi.de/trac/wiki. CAPS v1.0 described in this paper is permanently archived at
479	https://doi.org/10.5281/zenodo.5034971. The prediction data analyzed in this paper can be
480	accessed from https://doi.org/10.5281/zenodo.4911415.
481	
482	Author contributions: CYY and JL designed the model experiments, developed the
483	updated CAPS model, and wrote the manuscript, CYY conducted the prediction experiments
484	and analyzed the results. DC provided constructive feedback on the manuscript.
485	
486	Competing interests: The authors declare that they have no conflict of interest.
487	
487 488	Acknowledgements: This research is supported by the National Natural Science
487 488 489	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China
487 488 489 490	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and
487 488 489 490 491	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the
487 488 489 490 491 492	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the
 487 488 489 490 491 492 493 	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener-
487 488 489 490 491 492 493 494	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener- Institut, Helmholtz Zentrum für Polar- und Meeresforschung for providing the CryoSat-2 sea
487 488 489 490 491 492 493 494 495	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener- Institut, Helmholtz Zentrum für Polar- und Meeresforschung for providing the CryoSat-2 sea ice thickness data and CS2SMOS data, the Polar Science Center for distributing the PIOMAS
487 488 490 490 491 492 493 494 495 496	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener- Institut, Helmholtz Zentrum für Polar- und Meeresforschung for providing the CryoSat-2 sea ice thickness data and CS2SMOS data, the Polar Science Center for distributing the PIOMAS ice thickness data, the National Snow and Ice Data Center for providing the SSMIS sea ice
487 488 490 491 492 493 493 494 495 496 497	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener- Institut, Helmholtz Zentrum für Polar- und Meeresforschung for providing the CryoSat-2 sea ice thickness data and CS2SMOS data, the Polar Science Center for distributing the PIOMAS ice thickness data, the National Snow and Ice Data Center for providing the SSMIS sea ice concentration data, the European Centre for Medium-Range Weather Forecasts for distributing
487 488 490 491 492 493 494 495 495 496 497 498	Acknowledgements: This research is supported by the National Natural Science Foundation of China (42006188), the National Key R&D Program of China (2018YFA0605901), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021008). The authors also acknowledge the National Centers for Environmental Prediction for providing CFS seasonal forecasts, the University of Hamburg for distributing the SMOS sea ice thickness data, the Alfred-Wegener- Institut, Helmholtz Zentrum für Polar- und Meeresforschung for providing the CryoSat-2 sea ice thickness data and CS2SMOS data, the Polar Science Center for distributing the PIOMAS ice thickness data, the National Snow and Ice Data Center for providing the SSMIS sea ice concentration data, the European Centre for Medium-Range Weather Forecasts for distributing the ERA5 reanalysis, and the National Oceanic and Atmospheric Administration for providing

500

6. References 501 Bailey, D. A., Holland, M. M., DuVivier, A. K., Hunke, E. C., and Turner, A. K.: Impact of a 502 new sea ice thermodynamic formulation in the CESM2 sea ice component. Journal of 503 Advances in Modeling Earth Systems, 12, e2020MS002154. https://doi.org/10.1029/2020MS002154, 2020 504 505 Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic sea ice model for 506 climate study. J. Geophys. Res.-Oceans, 104, 15669-15677, 1999. 507 Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G. 508 and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: the 509 Rapid Refresh. Monthly Weather Review, 144,1669-1694. https://doi.org/10.1175/MWR-D-15-0242.1, 2016. 510 511 Biswas, M. K., Zhang, J. A., Grell, E., Kalina, E., Newman, K., Bernardet, L., Carson, L., 512 Frimel, J., and Grell, G.: Evaluation of the Grell-Freitas Convective Scheme in the 513 Hurricane Weather Research and Forecasting (HWRF) Model, Weather and Forecasting, 514 35(3), 1017-1033, 2020. 515 Blanchard-Wrigglesworth, E., Bitz, C., and Holland, M.: Influence of initial conditions and 516 climate forcing on predicting Arctic sea ice. Geophysical Research Letters, 38, L18503. 517 https://doi.org/10.1029/2011GL048807, 2011. 518 Blanchard-Wrigglesworth, E., and Bushuk, M.: Robustness of Arctic sea-ice predictability in 519 GCMs. Climate Dynamics, 52, 5555-5566, 2018. Blanchard-Wrigglesworth, E., Cullather, R., Wang, W., Zhang, J., and Bitz, C. M.: Model 520 521 forecast skill and sensitivity to initial conditions in the seasonal sea ice outlook. 522 Geophysical Research Letters, 42, 8042–8048. https://doi.org/10.1002/2015GL065860, 523 2015. 524 Bonan, D., Bushuk, M., and Winton, M.: A spring barrier for regional predictions of summer 525 Arctic Geophysical Research Letter, 46, 5937-5947. sea ice.

526 https://doi.org/10.1029/2019GL082947, 2019.

Briegleb, B. P. and Light, B.: A Delta-Eddington multiple scattering parameterization for solar
radiation in the sea ice component of the Community Climate System Model. NCAR
Tech. Note NCAR/TN-472+STR, National Center for Atmospheric Research, 2007.
Bruyère, C. L., Done, J. M., Holland, G. J., and Fredrick, S.: Bias corrections of global models
for regional climate simulations of high-impact weather. Clim Dyn 43, 1847-1856
(2014). https://doi.org/10.1007/s00382-013-2011-6, 2014.
Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Gudgel, R., Rosati, A., and Yang, X.: Skillful
regional prediction of Arctic sea ice on seasonal timescales. Geophysical Research Letter,
44, 4953–4964. https://doi.org/10.1002/2017GL073155, 2017.
Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A., and Gudgel, R.:
Regional Arctic sea-ice prediction: Potential versus operational seasonal forecast skill.
Climate Dynamics, 52, 2721–2743, 2018.
Bushuk, M., Winton, M., Bonan, D. B., Blanchard-Wrigglesworth, E., and Delworth, T. L.: A
mechanism for the Arctic sea ice spring predictability barrier. Geophysical Research
Letters, 47, e2020GL088335. https://doi.org/10.1029/2020GL088335, 2020.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: updated yearly. Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center
Distributed Active Archive Center. https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn
State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon.
Wea. Rev., 129, 569–585, 2001.
Chevallier, M., Salas y Mélia, D., Voldoire, A., Déqué, M., and Garric, G.: Seasonal forecasts
of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. Journal
of Climate, 26(16), 6092–6104, 2013.

552	Colette, A., Vautard, R., and Vrac, M.: Regional climate downscaling with prior statistical
553	correction of the global climate forcing, Geophys. Res. Lett., 39, L13707,
554	https://doi.org/10.1029/2012GL052258, 2012.
555	Day, J. J., Tietsche, S., Collins, M., Goessling, H. F., Guemas, V., Guillory, A., et al.: The
556	Arctic predictability and prediction on seasonal-to-interannual timescales (apposite) data
557	set version 1. Geoscientific Model Development, 9, 2255-2270, 2016.
558	Day, J., Tietsche, S., and Hawkins, E.: Pan-Arctic and regional sea ice predictability:
559	Initialization month dependence. Journal of Climate, 27(12), 4371-4390, 2014.
560	Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: updated daily. Sea
561	Ice Index, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data
562	Center. https://doi.org/10.7265/N5K072F8, 2017.
563	Freitas, S. R., Grell, G. A., Molod, A., Thompson, M. A., Putman, W. M., Santos e Silva, C.
564	M. and Souza, E. P.: Assessing the Grell-Freitas convection parameterization in the
565	NASA GEOS modeling system. J. Adv. Model. EarthSyst., 10, 1266-1289,
566	https://doi.org/10.1029/2017MS001251, 2018.
567	Germe, A., Chevallier, M., y Mélia, D. S., Sanchez-Gomez, E., and Cassou, C.: Interannual
568	predictability of Arctic sea ice in a global climate model: Regional contrasts and
569	temporal evolution. Climate Dynamics, 43(9-10), 2519–2538, 2014.
570	Grell, G. A., and Freitas, S.: A scale and aerosol aware stochastic convective parameterization
571	for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233-5250,
572	https://doi.org/10.5194/acp-14-5233-2014, 2014.
573	Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-
574	Reyes, F. J., et al.: A review on Arctic sea-ice predictability and prediction on seasonal
575	to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 142(695),
576	546–561, 2016.
577	Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E.,
578	et al.: Ocean forecasting in terrain-following coordinates: Formulation and skill

579	assessment of the Regional Ocean Modeling System, Journal of Computational Physics,
580	227, 3595–3624, 2008.
581	Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis. Quarterly Journal of
582	the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803,
583	2020.
584	Hunt, B. R., Kostelich, E. J., Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos:
585	A local ensemble transform Kalman filter. Physica D 230: 112–126, 2007.
586	Jung, T., Gordon, N.D., Bauer, P., Bromwich, D.H., Chevallier, M., Day, J.J., Dawson, J.,
587	Doblas-Reyes, F., Fairall, C., Goessling, H.F., Holland, M., Inoue, J., Iversen, T., Klebe,
588	S., Lemke, P., Losch, M., Makshtas. A., Mills, B., Nurmi, P., Perovich, D., Reid, P.,
589	Renfrew, I.A., Smith, G., Svensson, G., Tolstykh, M., and Yang, Q.: Advancing Polar
590	Prediction Capabilities on Daily to Seasonal Time Scales. Bulletin of the American
591	Meteorological Society. https://doi.org/10.1175/BAMS-D-14-00246.1, 2016.
592	Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice thickness
593	retrieval from SMOS brightness temperatures during the Arctic freeze-up period.
594	Geophys. Res. Lett., L05501, https://doi.org/10.1029/2012GL050916, 2012.
595	Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled
596	variability (1958-2018). Environmental Research Letters, 13(10), 105005, 2018
597	Laxon, S., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R.,
598	Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S.,
599	and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys.
600	Res. Lett., 40, https://doi.org/10.1002/grl.50193, 2013.
601	Lemieux, J. F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M.: Improving the
602	simulation of landfast ice by combining tensile strength and a parameterization for
603	grounded ridges. J. Geophys. Res. Oceans, 121:7354–7368,
604	http://dx.doi.org/10.1002/2016JC012006, 2016.

605	Liu, J., Chen, Z., Hu, Y., Zhang, Y., Ding, Y., Cheng, X., et al.: Towards reliable arctic sea ice
606	prediction using multivariate data assimilation. Science Bulletin, 64(1), 63–72, 2019.
607	Merryfield, W., Lee, WS., Wang, W., Chen, M., and Kumar, A.: Multi-system seasonal
608	predictions of Arctic sea ice. Geophysical Research Letters, 40, 1551-1556.
609	https://doi.org/10.1002/grl.50317, 2013.
610	Maslanik, J. and Stroeve, J.: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice
611	Concentrations, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data
612	Center Distributed Active Archive Center. https://doi.org/10.5067/U8C09DWVX9LM,
613	1999.
614	Msadek, R., Vecchi, G., Winton, M., and Gudgel, R.: Importance of initial conditions in
615	seasonal predictions of Arctic sea ice extent. Geophysical Research Letters, 41, 5208-
616	5215. https://doi.org/10.1002/2014GL060799, 2014.
617	Nakanishi, M., and Niino., H.: Development of an improved turbulence closure model for the
618	atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895–912,
619	https://doi.org/10.2151/jmsj.87.895, 2009.
620	Nerger, L., Danilov, S., Hiller, W., Schröter, J.: Using sea-level data to constrain a finite-
621	element primitive-equation ocean model with a local SEIK filter, Ocean Dynamics,
622	56(5/6), 634-649., <u>https://doi.org/10.1007/s10236-006-0083-0</u> , 2006.
623	Nerger, L., and Hiller, W.: Software for Ensemble-based Data Assimilation Systems -
624	Implementation Strategies and Scalability. Computers and Geosciences, 55, 110-118.
625	https://doi.org/10.1016/j.cageo.2012.03.026, 2013.
626	Nerger, L., Janjić, T., Schröter, J. and Hiller, W.: A unification of ensemble square root Kalman
627	filters. Monthly Weather Review, 140, 2335-2345. https://doi.org/10.1175/MWR-D-11-
628	00102.1, 2012.
629	Newton, R., Pfirman, S., Schlosser, P., Tremblay, B., Murray, M. and Pomerance, R.: White
630	Arctic vs. Blue Arctic: A case study of diverging stakeholder responses to environmental
631	change. Earth's Future, 4: 396-405. https://doi.org/10.1002/2016EF000356, 2016.

- 632 Peterson, K., Arribas, A., Hewitt, H., Keen, A., Lea, D., and McLaren, A.: Assessing the
- 633 forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Climate
- 634 Dynamics, 44(1-2), 147–162, 2015.
- Pham, D. T.: Stochastic methods for sequential data assimilation in strongly nonlinear systems.
 Mon. Wea. Rev., 129, 1194–1207, 2001.
- Rasch, P. J.: Conservative shape-preserving two-dimensional transport on a spherical reduced
 grid, Mon. Wea. Rev, 122, 1337-1350, 1994.
- Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily
 High-Resolution-Blended Analyses for Sea Surface Temperature, Journal of Climate,
 20(22), 5473-5496, 2007.
- 642 Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly
- 643 Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data,
- 644 The Cryosphere, 11, 1607–1623, <u>https://doi.org/10.5194/tc-11-1607-2017</u>, 2017.
- Rocheta, E., Evans, J. P., and Sharma, A.: Can Bias Correction of Regional Climate Model
 Lateral Boundary Conditions Improve Low-Frequency Rainfall Variability?, Journal of
 Climate, 30(24), 9785-9806, 2017.
- 648 Rocheta, E., Evans, J. P. and Sharma, A.: Correcting lateral boundary biases in regional climate
- 649 modelling: the effect of the relaxation zone. Clim. Dyn., 55, 2511–2521.
 650 <u>https://doi.org/10.1007/s00382-020-05393-1</u>, 2020.
- Serreze, M. C. and Meier, W. N.: The Arctic's sea ice cover: trends, variability, predictability,
 and comparisons to the Antarctic. Ann. N.Y. Acad. Sci., 1436: 36-53.
 https://doi.org/10.1111/nyas.13856, 2019.
- Saha, S., Moorthi, S., Wu, X., et al.: The NCEP climate forecast system version 2. J. Clim.
 27:2185–2208, 2014.
- 656 Shchepetkin, A.F., McWilliams, J. C.: Quasi-monotone advection schemes based on explicit
- locally adaptive dissipation. Mon. Weather Rev. 126 (6), 1541–1580, 1998.

658	Shchepetkin, A. F., and McWilliams, J. C.: The Regional Ocean Modeling System: A split-				
659	explicit, free-surface, topography following coordinates ocean model, Ocean Modelling,				
660	9, 347-404, 2005.				
661	Sigmond, M., Fyfe, J., Flato, G., Kharin, V., and Merryfield, W.: Seasonal forecast skill of				
662	Arctic sea ice area in a dynamical forecast system. Geophysical Research Letters, 40,				
663	529-534. https://doi.org/10.1002/grl.50129, 2013.				
664	Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and Powers,				
665	J. G.: A Description of the Advanced Research WRF Version 2. NCAR Technical Note,				
666	NCAR/TN-468+STR, 2005.				
667	Smolarkiewicz, P. K.: Multidimensional positive definite advection transport algorithm: An				
668	overview. Int. J. Numer. Methods Fluids, 50, 1123–1144, 2006.				
669	Song, Y. and Haidvogel, D. B.: A semi-implicit ocean circulation model using a generalized				
670	topography-following coordinate system. J. Comp. Phys., 115(1), 228-244, 1994.				
671	Stroeve, J., Blanchard-Wrigglesworth, E., Guemas, V., Howell, S., Massonnet, F., and Tietsche,				
672	S.: Improving predictions of Arctic sea ice extent, Eos, 96,				
673	https://doi.org/10.1029/2015EO031431, 2015.				
674					
	Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting				
675	Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013,				
675 676	Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014.				
675 676 677	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, 				
675 676 677 678	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and 				
675 676 677 678 679	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere, 8, 997-1018, https://doi.org/10.5194/tc-8-997-2014, 				
675 676 677 678 679 680	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere, 8, 997-1018, https://doi.org/10.5194/tc-8-997-2014, 2014. 				
675 676 677 678 679 680 681	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere, 8, 997-1018, https://doi.org/10.5194/tc-8-997-2014, 2014. Tietsche, S., Day, J., Guemas, V., Hurlin, W., Keeley, S., Matei, D., et al.: Seasonal to 				
 675 676 677 678 679 680 681 682 	 Stroeve, J., Hamilton, L. C., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008 - 2013, Geophys. Res. Lett., 41, 2411-2418, https://doi.org/10.1002/2014GL059388, 2014. Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere, 8, 997-1018, https://doi.org/10.5194/tc-8-997-2014, 2014. Tietsche, S., Day, J., Guemas, V., Hurlin, W., Keeley, S., Matei, D., et al.: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophysical 				

684	Turner, A. K., and Hunke, E. C.: Impacts of a mushy-layer thermodynamic approach in global					
685	sea-ice simulations using the CICE sea-ice model, J. Geophys. Res. Oceans, 120, 1253-					
686	1275, doi:10.1002/2014JC010358, 2015.					
687	Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity drainage: A					
688	parameterization for large-scale modeling, J. Geophys. Res., 118, 2279-2294					
689	doi:10.1002/jgrc.20171, 2013.					
690	Van den Dool, H.: Empirical Methods in Short-Term Climate Prediction, Oxford Univ. Press,					
691	Oxford, U. K., 2006.					
692	Wang, W., Chen, M., and Kumar, A.: Seasonal prediction of Arctic sea ice extent from a					
693	coupled dynamical forecast system. Monthly Weather Review, 141(4), 1375–1394, 2013					
694	Warner, J. C., Armstrong, B., He, R., and Zambon, J.: Development of a coupled ocean-					
695	atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modell. 35,					
696	230–244, 2010.					
697	Wu, W., Lynch, A. H., and Rivers, A.: Estimating the Uncertainty in a Regional Climate Model					
698	Related to Initial and Lateral Boundary Conditions, Journal of Climate, 18(7), 917-933,					
699	2005.					
700	Yang, CY., Liu, J., and Xu, S.: Seasonal Arctic sea ice prediction using a newly developed					
701	fully coupled regional model with the assimilation of satellite sea ice observations.					
702	Journal of Advances in Modeling Earth Systems, 12, e2019MS001938.					
703	https://doi.org/10.1029/2019MS001938, 2020.					
704	Zampieri, L., Goessling, H. F., and Jung, T.: Bright prospects for Arctic sea ice prediction on					
705	subseasonal time scales. Geophysical Research Letters, 45, 9731- 9738.					
706	https://doi.org/10.1029/2018GL079394, 2018.					
707	Zhang, J. and Rothrock, D.: Modeling global sea ice with a thickness and enthalpy distribution					
708						
100	model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845-861, 2003.					

710 7. Tables

Table 1 Difference in versions for the model components between the original and updated

712 CAPS

	Yang et al. (2020)	This paper
COAWST	3.1	3.5
WRF	3.6.1	4.1.2
ROMS	3.7 revision 748	3.8 revision 981
CICE	5.1.2	6.0.0

713

715

Table 2 The summary of physic parameterizations used in the Y21_CRTL experiment

WRF physics	
Cumulus parameterization	Grell-Freitas (Freitas et al. 2018;
	improved from Y20)
Microphysics parameterization	Morrison 2-moment (Morrison et al.
	2009; same as Y20)
Longwave radiation parameterization	CAM spectral band scheme (Collins et
	al. 2004; same as Y20)
Shortwave radiation parameterization	CAM spectral band scheme (Collins et
	al. 2004; same as Y20)
Boundary layer physics	MYNN2 (Nakanishi and Niino, 2006;
	improved from Y20)
Land surface physics	Unified Noah LSM (Chen and Dudhia,
	2001; improved from Y20)
ROMS physics	
Tracer advection scheme	MPDATA (Smolarkiewicz, 2006; same
	as Y20)
Tracer vertical mixing scheme	GLS (Umlauf and Burchard, 2003;
	same as Y20)

Bottom drag scheme	Quadratic bottom friction (QDRAG;			
	(same as Y20)			
CICE physics				
Ice dynamics	EVP (Hunke and Dukowicz, 1997;			
	improved from Y20)			
Ice thermodynamics	Bitz and Lipscomb (1999; same as			
	Y20)			
Shortwave albedo	Delta-Eddington (Briegleb and Light,			
	2007; same as Y20)			

716

- Table 3 The summary of the prediction experiments and details of experiment designs.
- 719 Note: All experiments use the CFS operational forecasts as initial and boundary conditions; VT:
- 720 vertical transformation function; VS: vertical stretching function; SH94: stretching function of
- 721 Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010).

Experiment	Physics	Assimilation	ROMS	Simulation
			vertical	period
			coordinate	
Y20	Physics (old version)	2 localization radii	VT 1	2018.07.01-
	listed in Table 2	SSMIS SIC	VS SH94	2018.10.01
		Simply-merged CryoSat-	<i>h_c</i> 10m	
		2/SMOS SIT		
Y20_MOD	Physics (old version)	6 localization radii	VT 1	2018.07.01-
	listed in Table 2	SSMIS SIC	VS SH94	2018.10.01
		Simply-merged CryoSat-	<i>h_c</i> 10m	
		2/SMOS SIT		
Y21_CTRL	Physics (new version)	6 localization radii	VT 1	2018.07.01-
	listed in Table 2	SSMIS SIC	VS SH94	2018.10.01
		Simply-merged CryoSat-	<i>h_c</i> 10m	
		2/SMOS SIT		
Y21_VT	Physics (new version)	6 localization radii	VT 2	2018.07.01-

	listed in Table 2	SSMIS SIC	VS S10	2018.10.01
		Simply-merged CryoSat-	<i>h_c</i> 300m	
		2/SMOS SIT		
Y21_RP	Advection: U3H/C4V	6 localization radii	VT 2	2018.07.01-
	Bottom drag:	SSMIS SIC	VS S10	2018.10.01
	LOGDRAG	Simply-merged CryoSat-	<i>h_c</i> 300m	
		2/SMOS SIT		
Y21_MUSHY	Same physics as	6 localization radii	VT 2	2018.07.01-
	Y21_RP	SSMIS SIC	VS S10	2018.10.01
	CICE: Mushy layer	Simply-merged CryoSat-	<i>h_c</i> 300m	
	thermodynamics	2/SMOS SIT		
Y21_SIT	Same physics as	6 localization radii	VT 2	2018.07.01-
	Y21_RP	SSMIS SIC	VS S10	2018.10.01
		OI-merged CryoSat-	<i>h_c</i> 300m	
		2/SMOS SIT		
Y21_EXT-7	Same physics as	6 localization radii	VT 2	2018.07.01-
	Y21_RP	SSMIS SIC	VS S10	2019.01.31
		OI-merged CryoSat-	<i>h_c</i> 300m	
		2/SMOS SIT		
Y21_MAR-7	Same physics as	6 localization radii	VT 2	2018.03.01-

	Y21_RP	SSMIS SIC		VS S10	2018.09.30
		OI-merged	CryoSat-	<i>h_c</i> 300m	
		2/SMOS SIT			

722

724 **8. Figures**

726 Figure 1 The initial sea ice thickness after data assimilation with (a) 2 localization radii/1.5m

727 ice thickness uncertainty, and (b) 6 localization radii/0.75m ice thickness uncertainty.

731 mean of Y20 (blue line) and Y20_MOD (red line).

- 734 Figure 3 Top panel: Time-series of Arctic sea ice extent for the observations (black line) and
- 735 the ensemble-mean of Y20_MOD (blue line) and Y21_CTRL (red line). Dashed and dotted
- 736 lines are the climatology and the damped anomaly persistence predictions. Bottom panel:
- 737 Time-series of the observed (black line) and the ensemble-mean of regional sea ice extents for
- 738 Y20_MOD (blue line) and Y21_CTRL (red line). (a) Beaufort-Chukchi Seas, (b) East Siberian-
- 739 Laptev Seas, (c) Barents-Kara-Greenland Seas, and (d) Baffin Bay-Canadian Archipelago.

Figure 4 Monthly mean of sea ice concentration for (a) July, (b) August, (c) September of the
NSIDC observations, and the difference between the predictions and the observations for (d)
July, (e) August, (f) September of Y20_MOD, (g) July, (h) August, and (i) September of
Y21_CTRL. Vertical/horizontal-line areas represent the difference of ice edge location (15%
concentration).

Figure 5 ERA5 monthly mean of near-surface air temperature for (a) July, (b) August, and (c)
September, the difference between Y20_MOD and ERA5 for (d) July, (e) August, (f)
September, and the difference between Y21_CTRL and Y20_MOD for (g) July, (h) August,
and (i) September.

Figure 6 Same as Figure 5, but for downward shortwave radiation at the surface.

755

756

757 Figure 7 Same as Figure 6, but for downward thermal radiation at the surface.

- Figure 8 Same as Figure 3, but for Y21_CTRL (blue line), Y21_VT (green line), and Y21_RP
- 761 (red line).

762

Figure 9 Monthly mean of sea ice concentration difference between the predictions and the
observations for (a) July, (b) August, (c) September of Y21_VT, (d) July, (e) August, and (f)
September of Y21_RP. Vertical/horizontal-line areas represent the difference of ice edge
location (15% concentration).

768

Figure 10 Left panel: Monthly mean of sea surface temperature for (a) July, (b) August, (c)
September of the OI SST, and the difference between the predictions and the observations for
(d) July, (e) August, (f) September of Y20_MOD. Right panel: Monthly mean of sea surface
temperature difference between Y21_CTRL and Y20_MOD for (g) July, (h) August, (i)
September, and the difference between Y21_VT/Y21_RP and Y21_CTRL for (j) July, (k)
August, (l) September of Y21_VT, (m) July, (n) August, and (o) September of Y21_RP.

Figure 11 Same as Figure 3, but for Y21_RP, Y21_MUSHY, and Y21_SIT.

Figure 12 Monthly mean of sea ice thickness for (a) July, (b) August, and (c) September of
Y21_RP, (d₁) July, (e₁) August, (f₁) September of Y21_MUSHY, (d₂) July, (e₂) August, (f₂)
September of Y21_SIT, the difference between Y21_MUSHY and Y21_RP for (g₁) July, (h₁)
August, and (i₁) September, and the difference between Y21_SIT and Y21_RP for (g₂) July,
(h₂) August, and (i₂) September.

785

787 Figure 13 Same as Figure 3, but for Y21_EXT-7.

Figure 14 Same as Figure 3, bur for Y21_MAR-7.